Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 42-49.doi: 10.16088/j.issn.1001-6600.2019.01.005

Previous Articles     Next Articles

Stance Detection Method Based on Two-Stage Attention Mechanism

YUE Tianchi1, ZHANG Shaowu1,2*, YANG Liang1, LIN Hongfei1, YU Kai2   

  1. 1.School of Computer Science and Technology, Dalian University of Technology, Dalian Liaoning 116024, China;
    2.School of Computer Science and Engineering, Xinjiang University of Finance and Economics, Urumqi Xinjiang 830012, China
  • Received:2018-09-22 Online:2019-01-20 Published:2019-01-08

Abstract: Stance detection aims to analysize from the text whether the text author is in favor of, against or neutral to the given target, which plays an important part in public opinion analysis. Target dependent stance detection is a challenging task because of the idiomatic phrase and limited contextual information. It is noted that existing methods can not sufficiently model the whole semantic of target and those methods can not jointly model the target and context. To tackle these problems, a two-stage attention model for stance detection is proposed in this paper. Firstly, apply attention mechanism to model target, then match the context with the target representation to obtain attention signal, and finally form the target blended text representation for text classification. Experimental results show the proposed model improves accuracy and F-score by 0.4% and 1.0% respectively on Xinjiang anti-terrorist corpus, and obtain the state of the performance for 4 targets on the NLPCC-2016 stance detection task dataset.

Key words: stance detection, deep learning, attention mechanism, text representation, text classification

CLC Number: 

  • TP391
[1] 赵妍妍,秦兵,刘挺. 文本情感分析[J]. 软件学报, 2010, 21(8):1834-1848.
[2] XU R, ZHOU Y, WU D, et al. Overview of NLPCC shared task 4: stance detection in Chinese microblogs[C]//International Conference on Computer Processing of Oriental Languages. Cham, Switzerland: Springer, 2016:907-916.
[3] MOHAMMAD S, KIRITCHENKO S, SOBHANI P,et al. SemEval-2016 Task 6: detecting stance in Tweets[C]//International Workshop on Semantic Evaluation. Stroudsburg,PA: ACL, 2016:31-41.
[4] 周耘立, 李珊珊. 微博立场检测研究综述[J]. 现代计算机, 2017(2):32-34.
[5] 刘继, 李磊. 暴恐主题下微博用户特征及情感倾向性分析[J]. 情报杂志, 2014(12):109-111.
[6] 奠雨洁, 金琴, 吴慧敏. 基于多文本特征融合的中文微博的立场检测[J]. 计算机工程与应用, 2017, 53(21):77-84.
[7] YU N, PAN D, ZHANG M, et al. Stance detection in Chinese microblogs with neural networks[C]//Natural Language Understanding and Intelligent Applications. Switzerland: Springer, 2016:893-900.
[8] ZARRELLA G, MARSH A. MITRE at SemEval-2016 Task 6: Transfer learning for stance detection[C]//International Workshop on Semantic Evaluation. Stroudsburg, PA: ACL, 2016:458-463.
[9] DU J, XU R, HE Y,et al. Stance classification with target-specific neural attention[C]//Twenty-Sixth International Joint Conference on Artificial Intelligence. San Francisco, CA: Margen Kaufmann, 2017:3988-3994.
[10] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2016:1480-1489.
[11] CHEN H, SUN M, TU C, et al. Neural sentiment classification with user and product attention[C]//Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016:1650-1659.
[12] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL ,2016:606-615.
[13] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Twenty-Sixth International Joint Conference on Artificial Intelligence. San Francisco, CA:Margen Kaufmann, 2017:4068-4074.
[14] 梁斌, 刘全, 徐进,等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8):1724-1735.
[15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[C]//Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 1997:1735-1780.
[16] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C/OL]// Proceedings of Workshop at ICLR. 2013.[2017-03-15] https://arxiv.org/pdf/1301.3781.pdf
[17] 韩斌. 向西方还原一个真实的新疆——从西方媒体报道看新疆国际形象的构建策略[J]. 对外传播, 2016(8):39-41.
[18] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C] //Isa-belle P. Proc of the EMNLP 2002. Stroudsburg, PA: ACL, 2002:79-86.
[19] 刘龙飞, 杨亮, 张绍武,等. 基于卷积神经网络的微博情感倾向性分析[J]. 中文信息学报, 2015, 29(6):159-165.
[20] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP. Stroudsburg, PA: ACL, 2014:1746-1751.
[1] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[2] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[3] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[4] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[5] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[6] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22.
[7] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[8] YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61.
[9] WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88.
[10] LIAO Hai-bo, WAN Zhong-ying, WANG Ming-wen. Projection Pursuit Model of Immune Evolution and Its ApplicationtoText Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 123-128.
[11] YUAN Ding-rong, XIE Yang-cai, LU Guang-quan, LIU Xing. A New Text Classification Approach Based on Fuzzy Soft Set Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 129-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!