Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 82-89.doi: 10.16088/j.issn.1001-6600.2019.02.010
Previous Articles Next Articles
ZHANG Jinlei, LUO Yuling*, FU Qiang
CLC Number:
[1] SHEN Furao, CHAO Jing, ZHAO Jinxi. Forecasting exchange rate using deep belief networks and conjugate gradient method[J]. Neurocomputing, 2015, 167: 243-253. DOI:10.1016/j.neucom.2015.04.071. [2] TAYLOR G.Composable, distributed-state models for high-dimensional time series[D].Toronto: University of Toronto, 2009. [3] HORNIK K,STINCHCOMBE M,WHITE H.Multilayer feedforward networks are universal approximators[J].Neural Networks, 1989, 2(5): 359-366. DOI: 10.1016/0893-6080(89)90020-8. [4] BENGIO Y,LECUN Y.Scaling learning algorithms toward AI[M]//BOTTOU L,CHAPELLE O,DeCOSTE D,et al. Large-scale Kernel Machines. Cambridge,MA:MIT Press,2007: 321-359. [5] SCHUSTER M, PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing, 1997,45(11):2673-2681.DOI:10.1109/78.650093. [6] HSIEH T J, HSIAO H F, YEH W C. Forecasting stock markets using wavelet transforms and recurrent neural networks:an integrated system based on artificial bee colony algorithm[J].Applied Soft Computing,2011,11(2):2510-2525.DOI: 10.1016/j.asoc.2010.09.007. [7] FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research,2018,270(2):654-669.DOI:10.1016/j.ejor.2017.11.054. [8] KIM K J,HAN I.Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[J]. Expert Systems with Applications,2000,19(2):125-132.DOI:10.1016/S0957-4174(00)00027-0. [9] GURESEN E,KAYAKUTLU G,DAIM T U.Using artificial neural network models in stock market index prediction[J]. Expert Systems with Applications,2011,38(8):10389-10397.DOI:10.1016/j.eswa.2011.02.068. [10] BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.DOI: 10.1561/2200000006. [11] YEH S H,WANG C J,TSAI M F.Deep belief networks for predicting corporate defaults[C]//24th Wireless and Optical Communication Conference. Piscataway,NJ:IEEE Press,2015:159-163.DOI:10.1109/WOCC.2015.7346197. [12] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166.DOI:10.1109/72.279181. [13] KOLEN J F,KREMER S C.Gradient flow in recurrent nets:the difficulty of learning long-term dependencies[M]//KOLEN J F,KREMER S C.A Field Guide to Dynamical Recurrent Networks.Piscataway NJ:IEEE Press,2001:237-244.DOI: 10.1109/9780470544037.ch14. [14] CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-11)[2018-08-13].https://arxiv.org/pdf/1412.3555v1.pdf. [15] HUYNH H D,DANG L M,DUONG D.A new model for stock price movements prediction using deep neural network[C]// Proceedings of the Eighth International Symposium on Information and Communication Technology.New York,NY:ACM Press,2017:57-62.DOI: 10.1145/3155133.3155202. [16] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J].Neural Computation,1989,1(2):270-280.DOI:10.1162/neco.1989.1.2.270. [17] XIAO Lin,LI Shuai,YANG Jian,et al.A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization[J].Neurocomputing,2018,285:125-132.DOI:10.1016/j.neucom.2018.01.033. [18] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.DOI: 10.1162/neco.1997.9.8.1735. [19] CHO K,Van MERRIENBOER B,BAHDANAU D,et al.On the properties of neural machine translation: encoder-decoder approaches[EB/OL].(2014-10-07)[2018-08-13].https://arxiv.org/pdf/1409.1259.pdf. [20] SIAMI-NAMINI S,NAMIN A S.Forecasting economics and financial time series: ARIMA vs. LSTM[EB/OL].(2018-03-15)[2018-08-13].https://arxiv.org/ftp/arxiv/papers/1803/1803.06386.pdf. [21] CHENG Jian,WANG Peisong,LI Gang,et al.Recent advances in efficient computation of deep convolutional neural networks[J].Frontiers of Information Technology & Electronic Engineering,2018,19(1):64-77.DOI:10.1631/FITEE. 1700789. [22] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958. |
[1] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
[2] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[3] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
[4] | HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22. |
[5] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
[6] | YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61. |
[7] | WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88. |
[8] | ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34. |
|