Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 90-104.doi: 10.16088/j.issn.1001-6600.2019.02.011

Previous Articles     Next Articles

Reversible Data Hiding Based on Image Interpolation and Reference Matrix

SUN Ronghai1, SHI Linfu1, HUANG Liyan2, TANG Zhenjun1, YU Chunqiang3*   

  1. 1.Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin Guangxi 541004, China;
    2.Guangxi Normal University Press(Group), Guilin Guangxi 541004, China;
    3.Network Information Center, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-06-25 Online:2019-04-25 Published:2019-04-28

Abstract: A reversible data hiding algorithm based on interpolation technique and reference matrix is proposed in this paper. Firstly, the cover image is interpolated to generate an interpolated image using an improved linear interpolation method. Then, the interpolated image is divided into non-overlapped blocks with size 2×2. And the pixel in top-left corner of each block is taken as horizontal ordinate of the point in plane. Moreover, other pixels are taken as vertical ordinates to construct three coordinate points, which are mapped into reference matrix. Finally, the vertical ordinates are modified in accordance with the decimal value of secret data and the value of corresponding coordinate points in reference matrix to realize data hiding. During data extraction, three coordinate points of each block are constructed via the same method in data hiding and mapped into the reference matrix to obtain the values of corresponding coordinate points to achieve data extraction. Since only interpolated pixels are modified and the original pixels keep unchanged, the cover image can be recovered without loss. Experimental results demonstrate that the proposed algorithm reaches high embedding capacity and has good visual quality.

Key words: image interpolation, linear interpolation, reversible information hiding, reference matrix

CLC Number: 

  • TP391
[1] 王宪保,李洁,姚明海,等.基于深度学习的太阳能电池片表面缺陷检测方法[J].模式识别与人工智能,2014,27(6): 517-523.DOI:10.16451/j.cnki.issn1003-6059.2014.06.006.
[2] JIA Hongbin,MURPHEY Y L,SHI Jianjun.An intelligent real-time vision system for surface defect detection[C]//Proceedings of the 17th International Conference on Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,2004:239-242.DOI: 10.1109/ICPR.2004.1334512.
[3] PENG Xiangqian,CHEN Youping,YU Wenyong,et al.An online defects inspection method for float glass fabrication based on machine vision[J].International Journal of Advanced Manufacturing Technology,2008,39(11/12):1180-1189. DOI:10.1007/s00170-007-1302-7.
[4] 胡浩,梁晋,唐正宗,等.数字图像相关法测量金属薄板焊接的全场变形[J].光学精密工程, 2012,20(7):1636-1644.DOI:10.3788/OPE.20122007.1636.
[5] 卜雄洙,李桂娟,杨波,等.中心偏移的全景环形图像快速展开[J].光学精密工程,2012,20(9):2103-2109.DOI: 10.3788/OPE.20122009.2103.
[6] JIAN Chuanxia,GAO Jian,AO Yinhui.Automatic surface defect detection for mobile phone screen glass based on machine vision[J].Applied Soft Computing,2017,52:348-358.DOI: 10.1016/j.asoc.2016.10.030.
[7] LU Chijie,TSAI Duming.Independent component analysis-based defect detection in patterned liquid crystal display surfaces[J].Image and Vision Computing,2008,26(7):955-970.DOI:10.1016/j.imavis.2007.10.007.
[8] ZHANG Lei,GRIFT T E.A new approach to crop-row detection in corn[C]//American Society of Agricultural and Biological Engineers Annual International Meeting 2010.St. Joseph,MI:American Society of Agricultural and Biological Engineers,2010:3950-3964.DOI:10.13031/2013.29834.
[9] SUN T H,TSENG C C,CHEN M S.Electric contacts inspection using machine vision[J].Image and Vision Computing, 2010, 28(6):890-901.DOI:10.1016/j.imavis.2009.11.006.
[10] 王震宇.基于机器视觉钢板表面缺陷检测技术研究[J].计算机与现代化,2013(7):130-134.DOI:10.3969/j.issn. 1006-2475.2013.07.035.
[11] 李超,孙俊.基于机器视觉方法的焊缝缺陷检测及分类算法[J].计算机工程与应用,2018,54(6):264-270.DOI: 10.3778/j.issn.1002-8331.1609-0322.
[12] 黄志鸿,毛建旭,王耀南,等.基于机器视觉的啤酒瓶口缺陷检测分类方法研究[J].电子测量与仪器学报,2016,30(6):873-879.DOI:10.13382/j.jemi.2016.06.006.
[13] 杨洋.基于SVM的印刷品缺陷在线检测[D].武汉:华中科技大学,2012.
[14] 孙智权,周奇,陈震,等.基于CMOS图像传感器的太阳能电池缺陷检测系统设计[J].仪表技术与传感器,2018(1):60-63.DOI:10.3969/j.issn.1002-1841.2018.01.015.
[15] 刘焕军,王耀南,段峰.基于支撑向量机的空瓶智能检测方法[J].控制与决策,2005,20(12):1434-1437.DOI:10.13195/j.cd.2005.12.116.liuhj.026.
[16] 贾云得.机器视觉[M].北京:科学出版社, 2000:48-81.
[17] 贺秋伟,王龙山,于忠党,等.基于图像处理和支持向量机的微型齿轮缺陷检测[J].吉林大学学报(工学版),2008,38(3):565-569.DOI:10.13229/j.cnki.jdxbgxb2008.03.008.
[18] KEERTHIS S,LIN C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003,15(7):1667-1689.DOI:10.1162/089976603321891855.
[19] 吴彰良,孙长库,刘洁.基于支持向量机的油封缺陷图像检测方法[J].光电工程,2012,39(3):40-45.DOI:10.3969/j.issn.1003-501X.2012.03.008.
[1] YU Chunqiang, DENG Fangzhou, ZHANG Xianquan, TANG Zhenjun, CHEN Yan, HE Nan. A Reversible Information Hiding Method Based on Multiple Prediction Values [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!