Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 90-104.doi: 10.16088/j.issn.1001-6600.2019.02.011
Previous Articles Next Articles
SUN Ronghai1, SHI Linfu1, HUANG Liyan2, TANG Zhenjun1, YU Chunqiang3*
CLC Number:
[1] 王宪保,李洁,姚明海,等.基于深度学习的太阳能电池片表面缺陷检测方法[J].模式识别与人工智能,2014,27(6): 517-523.DOI:10.16451/j.cnki.issn1003-6059.2014.06.006. [2] JIA Hongbin,MURPHEY Y L,SHI Jianjun.An intelligent real-time vision system for surface defect detection[C]//Proceedings of the 17th International Conference on Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,2004:239-242.DOI: 10.1109/ICPR.2004.1334512. [3] PENG Xiangqian,CHEN Youping,YU Wenyong,et al.An online defects inspection method for float glass fabrication based on machine vision[J].International Journal of Advanced Manufacturing Technology,2008,39(11/12):1180-1189. DOI:10.1007/s00170-007-1302-7. [4] 胡浩,梁晋,唐正宗,等.数字图像相关法测量金属薄板焊接的全场变形[J].光学精密工程, 2012,20(7):1636-1644.DOI:10.3788/OPE.20122007.1636. [5] 卜雄洙,李桂娟,杨波,等.中心偏移的全景环形图像快速展开[J].光学精密工程,2012,20(9):2103-2109.DOI: 10.3788/OPE.20122009.2103. [6] JIAN Chuanxia,GAO Jian,AO Yinhui.Automatic surface defect detection for mobile phone screen glass based on machine vision[J].Applied Soft Computing,2017,52:348-358.DOI: 10.1016/j.asoc.2016.10.030. [7] LU Chijie,TSAI Duming.Independent component analysis-based defect detection in patterned liquid crystal display surfaces[J].Image and Vision Computing,2008,26(7):955-970.DOI:10.1016/j.imavis.2007.10.007. [8] ZHANG Lei,GRIFT T E.A new approach to crop-row detection in corn[C]//American Society of Agricultural and Biological Engineers Annual International Meeting 2010.St. Joseph,MI:American Society of Agricultural and Biological Engineers,2010:3950-3964.DOI:10.13031/2013.29834. [9] SUN T H,TSENG C C,CHEN M S.Electric contacts inspection using machine vision[J].Image and Vision Computing, 2010, 28(6):890-901.DOI:10.1016/j.imavis.2009.11.006. [10] 王震宇.基于机器视觉钢板表面缺陷检测技术研究[J].计算机与现代化,2013(7):130-134.DOI:10.3969/j.issn. 1006-2475.2013.07.035. [11] 李超,孙俊.基于机器视觉方法的焊缝缺陷检测及分类算法[J].计算机工程与应用,2018,54(6):264-270.DOI: 10.3778/j.issn.1002-8331.1609-0322. [12] 黄志鸿,毛建旭,王耀南,等.基于机器视觉的啤酒瓶口缺陷检测分类方法研究[J].电子测量与仪器学报,2016,30(6):873-879.DOI:10.13382/j.jemi.2016.06.006. [13] 杨洋.基于SVM的印刷品缺陷在线检测[D].武汉:华中科技大学,2012. [14] 孙智权,周奇,陈震,等.基于CMOS图像传感器的太阳能电池缺陷检测系统设计[J].仪表技术与传感器,2018(1):60-63.DOI:10.3969/j.issn.1002-1841.2018.01.015. [15] 刘焕军,王耀南,段峰.基于支撑向量机的空瓶智能检测方法[J].控制与决策,2005,20(12):1434-1437.DOI:10.13195/j.cd.2005.12.116.liuhj.026. [16] 贾云得.机器视觉[M].北京:科学出版社, 2000:48-81. [17] 贺秋伟,王龙山,于忠党,等.基于图像处理和支持向量机的微型齿轮缺陷检测[J].吉林大学学报(工学版),2008,38(3):565-569.DOI:10.13229/j.cnki.jdxbgxb2008.03.008. [18] KEERTHIS S,LIN C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003,15(7):1667-1689.DOI:10.1162/089976603321891855. [19] 吴彰良,孙长库,刘洁.基于支持向量机的油封缺陷图像检测方法[J].光电工程,2012,39(3):40-45.DOI:10.3969/j.issn.1003-501X.2012.03.008. |
[1] | YU Chunqiang, DENG Fangzhou, ZHANG Xianquan, TANG Zhenjun, CHEN Yan, HE Nan. A Reversible Information Hiding Method Based on Multiple Prediction Values [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 24-32. |
|