Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (2): 24-32.doi: 10.16088/j.issn.1001-6600.2018.02.004

Previous Articles     Next Articles

A Reversible Information Hiding Method Based on Multiple Prediction Values

YU Chunqiang1,2,DENG Fangzhou3,ZHANG Xianquan1,2,4*,TANG Zhenjun4,CHEN Yan1,2,HE Nan3   

  1. 1. Network Information Center,Guangxi Normal University,Guilin Guangxi 541004,China;
    2. College of Computer Science and Information Technology,Guangxi Normal University,Guilin Guangxi 541004,China;
    3. Guangxi Experiment Center of Information Science,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;
    4. Network and Educational Technology Center,Guilin Normal College,Guilin Guangxi 541001,China
  • Received:2017-08-08 Online:2018-05-10 Published:2018-07-18

Abstract: A reversible information hiding method based on multiple prediction values is proposed in this paper. Multiple Predictors are firstly applied to predict a pixel value. The indexes of maximum prediction value and minimum prediction value are thus determined. Then,the relationship among maximum prediction value,minimum prediction value and current pixel value is used for classification. If the maximum prediction value is equal to the minimum prediction value,the optimal prediction value is the minimum prediction value. If the current pixel value is equal to or greater than maximum prediction value,the optimal prediction value is the maximum prediction value. If the current pixel value is equal to or less than minimum prediction value,the optimal prediction value is the minimum prediction value. Finally,the difference value between the current pixel value and the optimal prediction value is calculated and the corresponding different value is selected for data hiding. The method can extract secret information accurately and recover the original image without loss of information. The stego-image has good visual quality.

Key words: multiple prediction values, classification, difference value, reversible information hiding

CLC Number: 

  • TP311
[1] 王朔中,张新鹏,张卫明.以数字图像为载体的隐写分析研究进展[J].计算机学报,2009,32(7):1247-1263.DOI:10.3724/SP.J.1016.2009.01247.
[2] ZHANG Xianquan,SUN Zerui,TANG Zhenjun,et al. High capacity data hiding based on interpolated image[J].Multimedia Tools and Applications,2017,76(7):9195-9218.DOI:10.1007/s11042-016-3521-0.
[3] WANG Chunpeng,WANG Xingyuan,ZHANG Chuan,et al. Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution[J]. Signal Processing,2017,134:197-208.DOI:10.1016/j.sigpro.2016.12.010.
[4] WANG Chunpeng,WANG Xingyuan,XIA Zhiqiu,et al.Geometrically resilient color image zero-watermarking algorithm based on quaternion Exponent moments[J]. Journal of Visual Communication and Image Representation,2016,41: 247-259.DOI:10.1016/j.jvcir.2016.10.004.
[5] WANG Chunpeng,WANG Xingyuan,XIA Zhiqiu. Geometrically invariant image watermarking based on fast Radial Harmonic Fourier Moments[J].Signal Processing: Image Communication,2016,45: 10-23.DOI:10.1016/j.image.2016.03.007.
[6] FRIDRICH J,GOLJAN M,DU R. Lossless data embedding:new paradigm in digital watermarking[J]. EURASIP J Appl Signal Process, 2002(2):185-196.DOI:10.1155/S1110865702000537.
[7] CELIK M U,SHARMA G,TEKALP A M,et al. Lossless generalized:LSB data embedding[J]. IEEE Transactions on Image Processing,2005,14(2):253-266.DOI:10.1109/TIP.2004.840686.
[8] TIAN Jun. Reversible data embedding using a difference expansion[J]. IEEE Transactions on Circuits and Systems for Video Technology,2003,13(8):890-896.DOI:10.1109/TCSVT.2003.815962.
[9] LEE Chihchiang,WU Hsienchu,TSAI Chweishyong,et al. Adaptive lossless steganographic scheme with centralized difference expansion[J]. Pattern Recognition,2008,41(6):2097-2106.DOI:10.1016/j.patcog.2007.11.018.
[10] NI Zhicheng,SHI Yunqing,ANSARI N,et al,Reversible data hiding[J]. IEEE Transactions on Circuits and Systems for Video Technology,2006,16(3):354-362.DOI:10.1109/TCSVT.2006.869964.
[11] MA Xiaoxiao,PAN Zhibin,HU Sen,et al. High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism[J].Journal of Visual Communication and Image Representation,2015,28:71-82.DOI:10.1016/j.jvcir.2015.01.012.
[12] ZHANG Xianquan,YU Chunqiang,WANG Xiaoyun,et al. A reversible data hiding scheme for JPEG images[J]. ICIC Express Letters,2013,7(9):2575-2580.
[13] LI Xiaolong,LI Jian,LI Bin,et al. High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion[J]. Signal Processing. 2013,93(1):198-205.DOI:10.1016/j.sigpro.2012.07.025.
[14] PENG Fei,LI Xiaolong,YANG Bin.Improved PVO-based reversible data hiding[J].Digital Signal Processing,2014,25:255-265.DOI:10.1016/j.dsp.2013.11.002.
[15] WANG Xiang,DING Jing,PEI Qingqi.A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition[J]. Information Sciences,2015,310:16-35.DOI:10.1016/j.ins.2015.03.022.
[16] 闫兵,柏森,阳溢,等.改进的PVO-k可逆信息隐藏算法[J]. 应用科学学报,2016,34(5):605-615.DOI:10.3969/j.issn.0255-8297.2016.05.013.
[17] WEINBERGER M J,SEROUSSI G,SAPIRO G.The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS[J].IEEE Transactions on Image Processing,2000,9(8):1309-1324.DOI:10.1109/83.855427.
[18] WU Xiaolin,MEMON N. Context-based,adaptive,lossless image coding[J]. IEEE Transactions on Communications,1997,45(4):437-444.DOI:10.1109/26.585919.
[19] JIANG J,GUO B,YANG S Y.Revisiting the JPEG-LS prediction scheme[J]IEE Proceedings:Vision,Image and Signal Processing, 2000,147(6):575-580.DOI:10.1049/ip-vis:20000767.
[20] TANG Haijiang,KAMATA S.A gradient based predictive coding for lossless image compression[J].IEICE Transactions on Information and Systems,2006,E89-D(7): 2250-2256.DOI: 10.1093/ietisy/e89-d.7.2250.
[1] SU Lei, LI Junying. Discussion on Classification Standard of Eco-environment Quality in Counties of National Key Eco-functional Areas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 196-202.
[2] WU Hao, QIN Lichun, LUO Liurong. Improving Classification Rule with Lift Measure for KNN Classifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 75-81.
[3] SUN Ronghai, SHI Linfu, HUANG Liyan, TANG Zhenjun, YU Chunqiang. Reversible Data Hiding Based on Image Interpolation and Reference Matrix [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 90-104.
[4] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[5] NIE Yu, LIAO Xiangwen, WEI Jingjing, YANG Dingda, CHEN Guolong. Multi-label Classification Based on the Deep Autoencoder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 71-79.
[6] ZHANG Fang. Ecological Landscape Patterns in Ebinur Lake Region Based on Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 156-164.
[7] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115-119.
[8] HU Le-ning, DENG Hua, WU Hua-jing, WU Dao-ning, LIANG Shi-chu. The Characteristic of Soil Aggregate Structure in Different Artificial Forest Soils with Different Sieve Strength in Karst Region of Northeast Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 151-156.
[9] YANG Wen, LI Wen-jing, LI Shuang, LI Shu-ju, LIN Zhong-ming. Parallel Classification Compression Algorithm for Stream-Data Based on Granular Analysis and Storage of GEP [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 87-93.
[10] WANG Feng, JIN Xiao-bo, YU Jun-wei, WANG Gui-cai. V-optimal Histogram and Its Application in License Plate Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 138-143.
[11] HU Le-ning, SU Yi-rong, HE Xun-yang. Characteristic of Soil Aggregate Structure in Different Typical Soils in Karst Region of Northwest Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 213-219.
[12] QIN Lin-chan, ZHONG Ning, LÜ Sheng-fu, LI Mi. Interaction Effects of Web Content Appeal Strategies with User Tasks and Its Influence on Eye-Movement Pattern [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 30-35.
[13] LU Guang-quan, XIE Yang-cai, LIU Xing, ZHANG Shi-chao. An Improvement Semi-supervised Learning Based on KNN Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 45-49.
[14] SHEN Ze-hao, YE Zhong-xing. Fuzzy Clustering Analysis of Customer Credit Risk of Futures Company [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 101-104.
[15] LIAO Yuan-xiu, ZHOU Sheng-ming. Application of Errors in Cost-Sensitive Classifications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 110-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!