Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 105-112.doi: 10.16088/j.issn.1001-6600.2019.02.012

Previous Articles     Next Articles

Defect Detection of Solar Panel Based on Machine Vision

ZHU Yongjian*, PENG Ke, QI Guangwen, XIA Haiying, SONG Shuxiang   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-04-04 Online:2019-04-25 Published:2019-04-28

Abstract: In order to solve the problem of low efficiency, low detection speed and low accuracy of traditional solar panel defect detection method, this paper presents a method for the detection of solar panel based on machine vision,which adopts the method of combining hardware and software. According to the requirement of measurement precision, a mobile platform is designed which is suitable for shooting solar panel images,where the software part includes defect detection and measurement of grid line width. The width of the grid line is measured by centroid detecting and fitting a straight line. Based on this, the defect of the solar panel is detected by the support vector machine (SVM) image classification system, and a classifier is generated by using classified samples. Experimental verification shows that the defect detection accuracy is higher than 95%, and the grid line width measurement error is 1 μm. It is proved that the method not only is of low cost, high reliability and high detection efficiency, but also has wide practical value.

Key words: solar panel, support vector machine, defect detection, grid width measurement

CLC Number: 

  • TP391
[1] 王宪保,李洁,姚明海,等.基于深度学习的太阳能电池片表面缺陷检测方法[J].模式识别与人工智能,2014,27(6): 517-523.DOI:10.16451/j.cnki.issn1003-6059.2014.06.006.
[2] JIA Hongbin,MURPHEY Y L,SHI Jianjun.An intelligent real-time vision system for surface defect detection[C]//Proceedings of the 17th International Conference on Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,2004:239-242.DOI: 10.1109/ICPR.2004.1334512.
[3] PENG Xiangqian,CHEN Youping,YU Wenyong,et al.An online defects inspection method for float glass fabrication based on machine vision[J].International Journal of Advanced Manufacturing Technology,2008,39(11/12):1180-1189. DOI:10.1007/s00170-007-1302-7.
[4] 胡浩,梁晋,唐正宗,等.数字图像相关法测量金属薄板焊接的全场变形[J].光学精密工程, 2012,20(7):1636-1644.DOI:10.3788/OPE.20122007.1636.
[5] 卜雄洙,李桂娟,杨波,等.中心偏移的全景环形图像快速展开[J].光学精密工程,2012,20(9):2103-2109.DOI: 10.3788/OPE.20122009.2103.
[6] JIAN Chuanxia,GAO Jian,AO Yinhui.Automatic surface defect detection for mobile phone screen glass based on machine vision[J].Applied Soft Computing,2017,52:348-358.DOI: 10.1016/j.asoc.2016.10.030.
[7] LU Chijie,TSAI Duming.Independent component analysis-based defect detection in patterned liquid crystal display surfaces[J].Image and Vision Computing,2008,26(7):955-970.DOI:10.1016/j.imavis.2007.10.007.
[8] ZHANG Lei,GRIFT T E.A new approach to crop-row detection in corn[C]//American Society of Agricultural and Biological Engineers Annual International Meeting 2010.St. Joseph,MI:American Society of Agricultural and Biological Engineers,2010:3950-3964.DOI:10.13031/2013.29834.
[9] SUN T H,TSENG C C,CHEN M S.Electric contacts inspection using machine vision[J].Image and Vision Computing, 2010, 28(6):890-901.DOI:10.1016/j.imavis.2009.11.006.
[10] 王震宇.基于机器视觉钢板表面缺陷检测技术研究[J].计算机与现代化,2013(7):130-134.DOI:10.3969/j.issn. 1006-2475.2013.07.035.
[11] 李超,孙俊.基于机器视觉方法的焊缝缺陷检测及分类算法[J].计算机工程与应用,2018,54(6):264-270.DOI: 10.3778/j.issn.1002-8331.1609-0322.
[12] 黄志鸿,毛建旭,王耀南,等.基于机器视觉的啤酒瓶口缺陷检测分类方法研究[J].电子测量与仪器学报,2016,30(6):873-879.DOI:10.13382/j.jemi.2016.06.006.
[13] 杨洋.基于SVM的印刷品缺陷在线检测[D].武汉:华中科技大学,2012.
[14] 孙智权,周奇,陈震,等.基于CMOS图像传感器的太阳能电池缺陷检测系统设计[J].仪表技术与传感器,2018(1):60-63.DOI:10.3969/j.issn.1002-1841.2018.01.015.
[15] 刘焕军,王耀南,段峰.基于支撑向量机的空瓶智能检测方法[J].控制与决策,2005,20(12):1434-1437.DOI:10.13195/j.cd.2005.12.116.liuhj.026.
[16] 贾云得.机器视觉[M].北京:科学出版社, 2000:48-81.
[17] 贺秋伟,王龙山,于忠党,等.基于图像处理和支持向量机的微型齿轮缺陷检测[J].吉林大学学报(工学版),2008,38(3):565-569.DOI:10.13229/j.cnki.jdxbgxb2008.03.008.
[18] KEERTHIS S,LIN C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003,15(7):1667-1689.DOI:10.1162/089976603321891855.
[19] 吴彰良,孙长库,刘洁.基于支持向量机的油封缺陷图像检测方法[J].光电工程,2012,39(3):40-45.DOI:10.3969/j.issn.1003-501X.2012.03.008.
[1] LÜ Kaichen, YAN Hongfei, CHEN Chong. Quantitative Investment Strategy Based on CSI 300 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 1-12.
[2] LI Ziyan,LIU Weiming. New Method of Moving Vehicle Detection Based on Partial HOG Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 1-13.
[3] LIU Yanhong, LUO Xiaoshu, CHEN Jin, GUO Lei. Research on Cervical Cell Image Feature Extraction and Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 61-66.
[4] CHEN Si-yi, LUO Qiang, HUANG Hui-xian. Division Method of Coordinated Control Sub-areas Based on Group Decision Making Theory and Support Vector Machine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 18-25.
[5] ZUO Xin, HUANG Hai-long, LIU Jian-wei. Classifier of p-norm Regularizing SVM with Nonconvex Conjugate Gradient Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 51-58.
[6] WANG Shi-ming, XU Jian-min, LI Ri-han. Improvement on On-ramp Control Algorithm of Urban Freeway [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 1-6.
[7] YAN Xiao-ming, ZHENG Zhi. Optimizing Parameters of SVM Based on Combined Bionic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!