Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (1): 38-44.doi: 10.16088/j.issn.1001-6600.2015.01.007

Previous Articles     Next Articles

Some New Results for the Electron Beams Focusing System Model

ZHANG Mei-yue   

  1. College of Science, China University of Mining & Technology, Xuzhou Jiangsu 221116,China
  • Received:2014-10-21 Online:2015-03-15 Published:2018-09-17

Abstract: Electron beam focusing system theories are widely applied. In order to control the moving trace of electron beam and make it focus object effectivelly, the existence of positive periodic solution is studied based on the electron beam focusing system model. The sufficient condition and the region of the existence of at least a periodic solution for the model is found by using Krasnoselekii fixed point theorem in cone,then an example is given. The results show that the limited ranges of coefficient are reasonable and the method of theorem is correct. The previous results is extended and supplemented.

Key words: electron beam focusing, periodic solutions, existence, Krasnoselekii fixed point theorem

CLC Number: 

  • O175.8
[1] BEVC V, PALMER J L, Susskind C. On the design of the transition region of axisymmetric, magnetically focused beam values[J]. British Inst Radio Engineer, 1958, 18: 696-708.
[2] 何国柱. 永久磁铁周期性聚焦电子束[J]. 物理学报,1959,15(10):535-549.
[3] ZHANG Mei-yue, CHEN Tai-yong,LIU Wen-bin,et al. Existence of positive periodic solution for the electron beam focusing system[J]. Mathematical Methods in the Applied Science, 2005, 28:779-788.
[4] 丁同仁. 关于周期性Brillouin电子束聚焦系统的一个边值问题[J]. 北京大学学报:自然科学版,1965,11(1):31-38.
[5] 叶彦谦,王现. 电子注聚焦理论中所出现的非线性方程[J]. 应用数学学报,1978,1(1):13-41.
[6] ZHANG Mei-rong. Periodic solutions of Lienard equations with singular forces of repulsive type[J]. Journal of Mathematical Analysis and Applications, 1996, 203: 254-269.
[7] 周钦德,王怀中. 电子聚焦理论中的一个周期解问题[J]. 应用数学学报,1988,11(4): 433-443.
[8] REN Jing-li, CHENG Zhi-bo, STEFAN Siegmund. Positive periodic solution for Brillouin electron beam focusing system[J]. Discrete and Continuous Dynamical Systems: Series B,2011,16:385-392.
[9] 章美月, 刘文斌,张建军. 电子束聚焦系统模型正椭圆周期解的存在性[J]. 中国矿业大学学报,2007,36(6):864-868.
[10] 姚庆六. 奇异二阶微分方程n个正周期解的存在性[J]. 吉林大学学报:理学版,2007, 45(2):187-192.
[11] KRASNOSELSKII M A. Positive solutions of operator equations[M]. Croningen, Netherland: Noordhoff Press, 1964.
[1] LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73.
[2] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85.
[3] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[4] TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!