Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (4): 79-85.doi: 10.16088/j.issn.1001-6600.2019.04.010

Previous Articles     Next Articles

The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach

ZHU Yaping1, QU Guorong2, FAN Jianghua1*   

  1. 1.College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2.Department of Basic Education, Guilin Tourism University, Guilin Guangxi 541006, China
  • Received:2019-01-13 Online:2019-10-25 Published:2019-11-28

Abstract: A class of generalized projection operator is defined in this paper, and some properties of the generalized projection operator are obtained in reflexive, locally uniformly convex,smooth Banach spaces. The equivalence between the quasi-variational inequality problem and the fixed point problem is established. A concept of fixed point index of quasi-variational inequality is introduced and the fixed point index approach is applied to obtain the existence results for solutions of quasi-variational inequality problem under some conditions.

Key words: quasi-variational inequality, existence of solution, generalized projection operator, fixed point index

CLC Number: 

  • O177.91
[1] CHAN D, PANG J S. The generalized quasi-variational inequality problem[J].Mathematics of Operations Research, 1982,7(2):211-222.DOI:abs/10.1287/moor.7.2.211.
[2] AUSSEL D, CORREA R, MARECHAL M. Gap functions for quasivariational inequalities and generalized Nash equilibrium problems[J].Journal of Optimization Theory and Applications, 2011,151(3): 474-488.DOI:org/10.1007/s10957-011-9898-z.
[3] GUPTA R, MEHRA A. Gap functions and error bounds for quasi variational inequalities[J].Journal of Global Optimization, 2012,53(4):737-748.DOI:org/10.1007/s10898-011-9733-y.
[4] AUSSEL D, GUPTA R, MEHRA A. Gap functions and error bounds for inverse quasi-variational inequality problems[J].Journal of Mathematical Analysis and Applications,2013,407(2):270-280.DOI:10.1016/i.jmaa.2013.03.049.
[5] HARMS N, HOHEISEL T, KANZOW C. On a smooth dual gap function for a class of quasi-variational inequalities[J].Journal of Optimization Theory and Applications,2014,163(2):413-438.DOI:org/10.1007/s10957-014-0536-4.
[6] AUSSEL D, SULTANA A. Quasi-variational inequality problems with non-compact valued constraint maps[J].Journal of Mathematical Analysis and Applications,2017,456(2):1482-1494.DOI:10.1016/j.jmaa.2017.06.034.
[7] LI J L. The generalized projection operator on reflexive Banach spaces and its applications[J].Journal of Mathematical Analysis and Applications, 2005,306(1):55-71.DOI:org/10.1016/j.jmaa.2004.11.007.
[8] AUBIN J P, EKELAND I. Applied nonlinear analysis. Pure and Applied Mathematics[M].New York:Jokn Wiley & Sons, 1984.
[9] 张石生, 张从军. 集值映射的不动点指数及其在变分不等式中的应用[J].数学研究与评论,1994,14(1):101-104.
[10]WANG Z B, HUANG N J. Degree theory for a generalized set-valued variational inequality with an application in Banach spaces[J].Journal of Global Optimization,2011,49(2):343-357.DOI:org/10.1007/s10898-010-9547-3.
[1] PANG Yang,WEI Yuming,FENG Chunhua. Existence of Positive Solutions for a Class of Two-point BoundaryValue Problem of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[2] WEI Hongjin, ZHOU Xile, JIN Dongmei, YAN Yuehong. Additions to the Pteridophyte Flora of Hunan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 101 -106 .
[3] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .
[4] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[5] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[6] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[7] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[8] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[9] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[10] HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50 -55 .