Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 76-87.doi: 10.16088/j.issn.1001-6600.2021070402
Previous Articles Next Articles
ZHANG Ping, XU Qiaozhi*
CLC Number:
[1]CAO M M, CHEN W Q. Epidemiology of lung cancer in China[J]. Thoracic Cancer, 2019, 10(1): 3-7. DOI: 10.1111/1759-7714.12916. [2]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590. [3]REEVES A P, CHAN A B, YANKELEVITZ D F, et al. On measuring the change in size of pulmonary nodules[J]. IEEE Transactions on Medical Imaging, 2006, 25(4):435-450. DOI: 10.1109/TMI.2006.871548. [4]WANG S, ZHOU M, LIU Z Y, et al. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation[J]. Medical Image Analysis, 2017, 40:172-183. DOI: 10.1016/j.media.2017.06.014. [5]MITTAL A, HOODA R, SOFAT S. LF-SegNet: a fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs[J]. Wireless Personal Communications, 2018,101(1): 511-529. DOI: 10.1007/s11277-018-5702-9. [6]LIU M L, DONG J Y, DONG X H, et al. Segmentation of lung nodule in CT images based on mask R-CNN[C]// 2018 9th International Conference on Awareness Science and Technology (iCAST). Piscataway: IEEE, 2018:1-6. DOI: 10.1109/ICAwST.2018.8517248. [7]SINGADKAR G, MAHAJAN A, THAKUR M, et al. Deep deconvolutional residual network based automatic lung nodule segmentation[J]. Journal of Digital Imaging, 2020, 33(3):678-684. DOI: 10.1007/s10278-019-00301-4. [8]WANG S, ZHOU M, GEVAERT O, et al. A multi-view deep convolutional neural networks for lung nodule segmentation[C]// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE, 2017:1752-1755. DOI: 10.1109/EMBC.2017.8037182. [9]张花齐, 王光磊, 李艳,等. CT图像肺结节的全自动算法研究[J]. 激光杂志, 2019, 40(4):59-63. [10]HUANG X, SUN W Q, TSENG T L B, et al. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks[J]. Computerized Medical Imaging and Graphics, 2019, 74: 25-36. DOI: 10.1016/j.compmedimag.2019.02.003. [11]RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assited Intervention-MICCAI 2015. Cham: Springer, 2015:234-241. DOI: 10.1007/978-3-319-24574-4_28. [12]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transation on Pattern Analysis and Machine Intelligence, 2019, 42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [13]WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018, Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [14]郝晓宇,熊俊峰,薛旭东,等.融合双注意力机制3D U-Net的肺肿瘤分割[J].中国图象图形学报,2020,25(10):2119-2127. DOI: 1006-8961(2020)10-2119-09. [15]王磐,强彦,杨晓棠,等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程,2021,47(2):307-313. DOI: 10.19678/j.issn.1000-3428.0057019. [16]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020:510-519. DOI: 10.1109/CVPR.2019.00060. [17]WU Y X, HE K M. Group normalization[J]. International Journal of Computer Vision, 2020, 128(3):742-755. DOI: 10.1007/s11263-019-01198-w. [18]李小光. 混合损失函数支持向量回归机的性能研究[J]. 西北大学学报(自然科学版), 2011,41(2):210-214. [19]SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. DOI: 10.1109/CVPR.2015.7298965. [20]BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615. [21]ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL].(2018-02-20)[2021-05-30]. https://arxiv.org/abs/1802.06955v1. DOI: 10.48550/arXiv.1802.06955. [22]OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].(2018-04-11)[2021-05-30].https://arxiv.org/abs/1804.03999v1. DOI: 10.48550/arXiv.1804.03999. |
[1] | LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48. |
[2] | WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75. |
[3] | LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103. |
[4] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[5] | YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184. |
[6] | LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98. |
[7] | WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133. |
[8] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
[9] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[10] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[11] | XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50. |
[12] | TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39. |
[13] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
[14] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[15] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
|