Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 40-48.doi: 10.16088/j.issn.1001-6600.2021091503
Previous Articles Next Articles
LI Zhengguang1, CHEN Heng1*, LIN Hongfei2
CLC Number:
[1]SARKER A, BELOUSOV M, FRIEDRICHS J, et al. Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health(SMM4H)-2017 shared task[J]. Journal of the American Medical Informatics Association, 2018, 25(10): 1274-1283. DOI: 10.1093/jamia/ocy114. [2]朱晓旭,林鸿飞,曾泽渊. 基于社交媒体的药物不良反应检测[J]. 山西大学学报(自然科学版), 2020, 43(1): 14-21. [3]BENTON A, UNGAR L, HILL S, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation[J]. Journal of Biomedical Informatics, 2011, 44(6): 989-996. [4]张亚飞, 于琦, 王于心, 等. 基于药物论坛中潜在不良反应与适应症的知识发现体系构建[J]. 中华医学图书情报杂志, 2020, 29(7): 38-43. [5]ZHANG Y, CUI S, GAO H. Adverse drug reaction detection on social media with deep linguistic features[J]. Journal of Biomedical Informatics, 2020, 106: 103437. [6]许力, 李建华. 基于BERT和BiLSTM-CRF的生物医学命名实体识别[J]. 计算机工程与科学, 2021, 43(10): 1873-1879. [7]LUO L, YANG Z, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics. 2018, 34(8): 1381-1388. [8]ZHANG T, LIN H, REN Y, et al. Identifying adverse drug reaction entities from social media with adversarial transfer learning model[J]. Neurocomputing, 2021, 45: 254-262. [9]LI Z, YANG Z, WANG L, et al. Lexicon knowledge boosted interaction graph network for adverse drug reaction recognition from social media[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2777-2786. [10]佘朝阳, 严馨, 徐广义, 等. 基于数据增强和半监督学习的药物不良反应检测[J/OL]. 计算机工程[2021-10-15]. https://doi.org/10.19678/j.issn.1000-3428.0062170. [11]SAHU S K, ANAND A. Recurrent neural network models for disease name recognition using domain invariant features[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2016: 2216-2225. DOI: 10.18653/v1/P16-1209. [12]JAGANNATHA A, YU H. Structured prediction models for RNN based sequence labeling in clinical text[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 856-865. DOI: 10.18653/v1/D16-1082. [13]PANDEY C, IBRAHIM Z, WU H H, et al. Improving RNN with attention and embedding for adverse drug reactions[C]// Proceedings of the 2017 International Conference on Digital Health. New York, NY: Association for Computing Machinery, 2017: 67-71. DOI: 10.1145/3079452.3079501. [14]PENG Y F, YAN S K, LU Z Y. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets[C]// Proceedings of the 18th BioNLP Workshop and Shared Task. Stroudsburg, PA: Association for Computational Linguistics, 2019: 58-65. DOI: 10.18653/v1/W19-5006. [15]申晨, 林鸿飞. 基于图嵌入的社交媒体药物不良反应事件检测方法[J]. 大连理工大学学报, 2020, 60(5): 547-554. [16]宋雅文, 杨志豪, 罗凌, 等. 基于字符卷积神经网络的生物医学变异实体识别方法[J]. 中文信息学报, 2021, 35(5): 63-69. [17]SARABADANI S. Detection of adverse drug reaction mentions in tweets using ELMo[C]// Proceedings of the 4th Social Media Mining for Health Applications(#SMM4H) Workshop & Shared Task. Stroudsburg, PA: Association for Computational Linguistics, 2019: 120-122. DOI: 10.18653/v1/W19-3221. [18]SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks[EB/OL].(2015-11-03)[2021-09-15].http:// arxiv.org/abs/1505.00387. DOI: 10.48550/arXiv.1505.00387. [19]DEWI I N, 蔡晓玲, 刘晓锋, 等. 结合类别关键词与注意力机制的药物相互关系抽取模型[J]. 华南理工大学学报(自然科学版), 2021, 49(1): 10-17. [20]YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2016: 1480-1489. DOI: 10.18653/v1/N16-1174. [21]魏巍, 傅维刚. 面向社交媒体的细粒度ADR本体的半自动构建方法研究[J]. 图书情报工作, 2019, 63(3): 108-114. [22]COCOS A, FIKS A G, MASINO A J. Deep learning for pharmacovigilance: Recurrent neural network architectures for labeling adverse drug reactions in Twitter posts[J]. Journal of the American Medical Informatics Association, 2017, 24(4): 813-821. DOI: 10.1093/jamia/ocw180. [23]NIKFARJAM A, SARKER A, O’CONNOR K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features[J]. Journal of the American Medical Informatics Association, 2015, 22(3): 671-681. DOI: 10.1093/jamia/ocu041. [24]NIKFARJAM A, GONZALEZ G H. Pattern mining for extraction of mentions of adverse drug reactions from user comments[J]. AMIA Annual Symposium Proceedings, 2011, 2011: 1019-1026. [25]LAI S, LIU K, XU L, et al. How to generate a good word embedding?[J]. IEEE Intelligent Systems, 2016, 31(6): 5-14. [26]DUCHI J, HAZAN E, SINGER Y. Adaptive Subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. [27]CHOWDHURY S, ZHANG C W, YU P S. Multi-Task Pharmacovigilance Mining from Social Media Posts[C]// Proceedings of the 2018 World Wide Web Conference. Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2018: 117-126. DOI: 10.1145/3178876.3186053. |
[1] | WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75. |
[2] | ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87. |
[3] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[4] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[5] | WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60. |
[6] | WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41. |
[7] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
|