Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 88-94.doi: 10.16088/j.issn.1001-6600.2021071503

Previous Articles     Next Articles

High Resolution Remote Sensing Image Classification Based on Dense Connection

CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun*   

  1. School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha Hunan 410004, China
  • Received:2021-07-15 Revised:2021-10-29 Online:2022-05-25 Published:2022-05-27

Abstract: High-resolution remote sensing image classification is a current research hotspot. The high-resolution remote sensing image classification model (Deeplab) based on deep convolutional networks and fully connected conditional random fields is widely used in this field because of its efficient and accurate classification performance. The Deeplab model has the problem of insufficient information utilization of high-resolution remote sensing images by hole convolution, which limits the further improvement of classification accuracy. In view of this, this paper proposes a new high-resolution remote sensing image classification model (Dspp). The Dspp model adopts a dense convolution network connection structure, and replaces Deeplab′s hollow convolution pyramid structure with a dense connection structure to improve information utilization and enhance the generalization ability of the model. Compared with the FCN model, the FCN-8S model and the Deeplab model, the overall accuracy of the Dspp model has improved by 16.8%, 11.7%, and 7.7%, which verifies the effectiveness of the model.

Key words: high resolution remote sensing image, classification model, hole convolution;dense connection structure, full connection conditional random field

CLC Number: 

  • TP751
[1]JI J, LU X C, LUO M, et al. Parallel fully convolutional network for semantic segmentation[J]. IEEE Access, 2021, 9: 673-682. DOI: 10.1109/ACCESS.2020.3042254.
[2]PENG C, LI Y Y, JIAO L C, et al. Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2612-2626. DOI: 10.1109/JSTARS.2019.2906387.
[3]BI Q, QIN K, ZHANG H, et al. APDC-Net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1603-1607. DOI: 10.1109/LGRS.2019.2949930.
[4]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015: 3431-3440. DOI: 10.1109/TPAMI.2016:2572683.
[5]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
[6]LI X M,CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. DOI: 10.1109/TMI.2018.2845918.
[7]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184.
[8]王云艳, 罗冷坤, 周志刚. 改进型DeepLab的极化SAR果园分类[J]. 中国图象图形学报, 2019, 24(11): 2035-2044.
[9]袁立, 袁吉收, 张德政. 基于DeepLab-v3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 236-243.
[10]陈天华, 郑司群, 于峻川. 采用改进DeepLab网络的遥感图像分割[J]. 测控技术, 2018, 37(11): 34-39.
[11]FAN H, WEI Q D, SHU D Q, et al. An improved deeplab based model for extracting cultivated land information from high definition remote sensing images[C]// 2019 IEEE International Conference on Signal, Information and Data Processing(ICSIDP). Piscataway: IEEE, 2019: 1-6. DOI: 10.1109/ICSIDP47821.2019.9173010.
[12]NIU Z J, LIU W, ZHAO J Y, et al. DeepLab-based spatial feature extraction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 251-255. DOI: 10.1109/LGRS.2018.2871507.
[13]FENG W Q, SUI H G, HUA L, et al. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 52-55. DOI: 10.1109/IGARSS.2019.8899163.
[14]HASSAN A, HUSSEIN W M, SAID E, et al. A deep learning framework for automatic airplane detection in remote sensing satellite images[C]// 2019 IEEE Aerospace Conference. Piscataway: IEEE, 2019: 1-10. DOI: 10.1109/AERO.2019.8741938.
[15]冯珂垚,饶鹏,陆福星,等.基于神经网络的高分辨率快速目标检测方法[J].电子设计工程,2018,26(22):169-173.
[16]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. DOI:10.1109/CVPR.2017.243
[17]KUSSUL N, LAVRENIUK M, SKAKUN S. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128.
[18]史路路, 郑柯, 唐娉, 等. 一种面向土地覆盖分类的卷积神经网络模型[J]. 遥感信息, 2019, 34(3): 34-42.
[19]柏宇阳, 朱福珍, 巫红. 改进的密集连接网络遥感图像超分辨重建[J]. 高技术通讯, 2021, 31(10): 1037-1043.
[20]张春森, 刘恒恒, 葛英伟, 等. 多尺度空洞卷积金字塔网络建筑物提取[J]. 西安科技大学学报, 2021, 41(3): 490-497, 574.
[21]贺伟, 王丹阳. 基于多尺度密集连接网络的图像超分辨算法[J]. 计算机仿真, 2021, 38(11): 259-265.
[22]马中启, 朱好生, 杨海仕, 等. 基于多特征融合密集残差CNN的人脸表情识别[J]. 计算机应用与软件, 2019, 36(7): 197-201.
[23]余璐璐. 基于残差密集网络的去运动模糊算法研究[D]. 武汉:武汉理工大学, 2020. DOI: 10.27381/d.cnki.gwlgu.2020.000635.
[24]张为, 魏晶晶. 嵌入DenseNet结构和空洞卷积模块的改进YOLO v3火灾检测算法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(9): 976-983.
[25]张真真. 基于卷积神经网络和条件随机场的眼底图像血管分割研究[D]. 湘潭: 湘潭大学, 2018.
[26]袁帅, 王康, 单义. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 864-872.
[1] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .