Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 88-94.doi: 10.16088/j.issn.1001-6600.2021071503
Previous Articles Next Articles
CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun*
CLC Number:
[1]JI J, LU X C, LUO M, et al. Parallel fully convolutional network for semantic segmentation[J]. IEEE Access, 2021, 9: 673-682. DOI: 10.1109/ACCESS.2020.3042254. [2]PENG C, LI Y Y, JIAO L C, et al. Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2612-2626. DOI: 10.1109/JSTARS.2019.2906387. [3]BI Q, QIN K, ZHANG H, et al. APDC-Net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1603-1607. DOI: 10.1109/LGRS.2019.2949930. [4]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015: 3431-3440. DOI: 10.1109/TPAMI.2016:2572683. [5]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615. [6]LI X M,CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. DOI: 10.1109/TMI.2018.2845918. [7]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184. [8]王云艳, 罗冷坤, 周志刚. 改进型DeepLab的极化SAR果园分类[J]. 中国图象图形学报, 2019, 24(11): 2035-2044. [9]袁立, 袁吉收, 张德政. 基于DeepLab-v3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 236-243. [10]陈天华, 郑司群, 于峻川. 采用改进DeepLab网络的遥感图像分割[J]. 测控技术, 2018, 37(11): 34-39. [11]FAN H, WEI Q D, SHU D Q, et al. An improved deeplab based model for extracting cultivated land information from high definition remote sensing images[C]// 2019 IEEE International Conference on Signal, Information and Data Processing(ICSIDP). Piscataway: IEEE, 2019: 1-6. DOI: 10.1109/ICSIDP47821.2019.9173010. [12]NIU Z J, LIU W, ZHAO J Y, et al. DeepLab-based spatial feature extraction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 251-255. DOI: 10.1109/LGRS.2018.2871507. [13]FENG W Q, SUI H G, HUA L, et al. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 52-55. DOI: 10.1109/IGARSS.2019.8899163. [14]HASSAN A, HUSSEIN W M, SAID E, et al. A deep learning framework for automatic airplane detection in remote sensing satellite images[C]// 2019 IEEE Aerospace Conference. Piscataway: IEEE, 2019: 1-10. DOI: 10.1109/AERO.2019.8741938. [15]冯珂垚,饶鹏,陆福星,等.基于神经网络的高分辨率快速目标检测方法[J].电子设计工程,2018,26(22):169-173. [16]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. DOI:10.1109/CVPR.2017.243 [17]KUSSUL N, LAVRENIUK M, SKAKUN S. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128. [18]史路路, 郑柯, 唐娉, 等. 一种面向土地覆盖分类的卷积神经网络模型[J]. 遥感信息, 2019, 34(3): 34-42. [19]柏宇阳, 朱福珍, 巫红. 改进的密集连接网络遥感图像超分辨重建[J]. 高技术通讯, 2021, 31(10): 1037-1043. [20]张春森, 刘恒恒, 葛英伟, 等. 多尺度空洞卷积金字塔网络建筑物提取[J]. 西安科技大学学报, 2021, 41(3): 490-497, 574. [21]贺伟, 王丹阳. 基于多尺度密集连接网络的图像超分辨算法[J]. 计算机仿真, 2021, 38(11): 259-265. [22]马中启, 朱好生, 杨海仕, 等. 基于多特征融合密集残差CNN的人脸表情识别[J]. 计算机应用与软件, 2019, 36(7): 197-201. [23]余璐璐. 基于残差密集网络的去运动模糊算法研究[D]. 武汉:武汉理工大学, 2020. DOI: 10.27381/d.cnki.gwlgu.2020.000635. [24]张为, 魏晶晶. 嵌入DenseNet结构和空洞卷积模块的改进YOLO v3火灾检测算法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(9): 976-983. [25]张真真. 基于卷积神经网络和条件随机场的眼底图像血管分割研究[D]. 湘潭: 湘潭大学, 2018. [26]袁帅, 王康, 单义. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 864-872. |
[1] | XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50. |
|