Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 132-139.doi: 10.16088/j.issn.1001-6600.2021070902
Previous Articles Next Articles
ZHANG Wanjing, LIN Zhigui*
CLC Number:
[1] NISHIURA H, WILSON N, BAKER M. Estimating the reproduction number of the novel influenza A virus(H1N1) in a Southern Hemisphere setting: preliminary estimate in New Zealand[J]. The New Zealand Medical Journal, 2009, 122(1299): 73-77. [2] ZHOU J F, WANG D Y, GAO R B, et al. Biological features of novel avian influenza A (H7N9) virus[J]. Nature, 2013, 499(7459): 500-503. [3] GUZMAN M G, HALSTEAD S B, ARTSOB H, et al. Dengue: a continuing global threat[J]. Nature Reviews Microbiology, 2010, 8(12 Suppl): S7-S16. [4] 周涛, 刘权辉, 杨紫陌, 等. 新型冠状病毒肺炎基本再生数的初步预测[J]. 中国循证医学杂志, 2020, 20(3): 359-364. [5] KANG H, RUAN S G. Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions[J]. Journal of Differential Equations, 2021, 278: 430-462. [6] 丁亚君, 张存华. Lengyel-Epstein反应扩散系统的稳定性和Turing不稳定性[J]. 高校应用数学学报A辑, 2018, 33(3): 272-280. [7] 林支桂. 数学生态学导引[M]. 北京: 科学出版社, 2013: 94-107. [8] ZUÑIGA-GALINDO W A. Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis[J]. Journal of Mathematical Analysis and Applications, 2020, 491(1): 124239. [9] 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1): 88-97. [10] KERMACK W O, McKendrick A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1927, 115(772): 700-721. [11] BEREZOVSKY F, KAREV G, SONG B, et al. A simple epidemic model with surprising dynamics[J]. Mathematical Biosciences and Engineering, 2005, 2(1): 133-152. [12] WANG W M, CAI Y L, WU M J, et al. Complex dynamics of a reaction-diffusion epidemic model[J]. Nonlinear Analysis: Real World Applications, 2012, 13(5): 2240-2258. [13] PLAZA R G, SÁNCHEZ-GARDUÑO F, PADILLA P, et al. The effect of growth and curvature on pattern formation [J]. Journal of Dynamics and Differential Equations, 2004, 16(4): 1093-1121. [14] SANCHEZ-GARDUNO F, KRAUSE A L, CASTILLO J A, et al. Turing-Hopf patterns on growing domains: The torus and the sphere[J]. Journal of Theoretical Biology, 2019, 481: 136-150. [15] 王玮明, 蔡永丽. 生物数学模型斑图动力学[M]. 北京: 科学出版社, 2020: 8-11. |
[1] | GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100. |
[2] | HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81. |
[3] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
[4] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
[5] | CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21. |
[6] | LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63. |
|