Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 36-48.doi: 10.16088/j.issn.1001-6600.2022031004
Previous Articles Next Articles
ZHANG Shichao1*, LI Jiaye2
CLC Number:
[1]MESKE C, BUNDE E, SCHNEIDER J, et al. Explainable artificial intelligence: objectives, stakeholders, and future research opportunities[J]. Information Systems Management, 2022, 39(1): 53-63. DOI: 10.1080/10580530.2020.1849465. [2]LONGONI C, CIAN L. Artificial intelligence in utilitarian vs. hedonic contexts: the “word-of-machine” effect[J]. Journal of Marketing, 2022, 86(1): 91-108. DOI: 10.1177/0022242920957347. [3]YANG Y, LIU Y, LÜ X Y, et al. Anthropomorphism and customers’ willingness to use artificial intelligence service agents[J]. Journal of Hospitality Marketing & Management, 2022, 31(1): 1-23. DOI: 10.1080/19368623.2021.1926037. [4]ZHANG K, CHEN K Z. Artificial intelligence: opportunities in lung cancer[J]. Current Opinion in Oncology, 2022, 34(1): 44-53. DOI: 10.1097/CCO.0000000000000796. [5]ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]// 2017 International Conference on Engineering and Technology (ICET). Piscataway, NJ: IEEE Press, 2017: 1-6. DOI: 10.1109/ICEngTechnol.2017.8308186. [6]ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY: Association for Computing Machinery, 2019: 793-803. DOI: 10.1145/3292500.3330961. [7]苗旭鹏, 周跃, 邵蓥侠, 等. GSO: 基于图神经网络的深度学习计算图子图替换优化框架[J]. 计算机科学, 2022, 49(3): 86-91. DOI: 10.11896/jsjkx.210700199. [8]黄春, 姜浩, 全哲, 等. 面向深度学习的批处理矩阵乘法设计与实现[J]. 计算机学报, 2022, 45(2): 225-239. DOI: 10.11897/SP.J.1016.2022.00225. [9]LIU H W, LI X L, ZHANG S C, et al. Adaptive hashing with sparse matrix factorization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4318-4329. DOI: 10.1109/TNNLS.2019.2954856. [10]ZHU X F, ZHANG S C, HE W, et al. One-step multi-view spectral clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(10): 2022-2034. DOI: 10.1109/TKDE.2018.2873378. [11]ZHU X F, YANG J Y, ZHANG C Y, et al. Efficient utilization of missing data in cost-sensitive learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2425-2436. DOI: 10.1109/TKDE.2019.2956530. [12]ZHAO L, SUN Q, YE J P, et al. Multi-task learning for spatio-temporal event forecasting[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: Association for Computing Machinery, 2015: 1503-1512. DOI: 10.1145/2783258.2783377. [13]FENG W, ZHANG C, ZHANG W, et al. STREAMCUBE: hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream[C]// 2015 IEEE 31st International Conference on Data Engineering. Piscataway, NJ: IEEE Press, 2015: 1561-1572. DOI: 10.1109/ICDE.2015.7113425. [14]张师超. 一个预测模型及性质[J]. 计算机学报, 1992, 15(4): 318-320. [15]张师超. 时态关系代数与元组演算的等价性[J]. 计算机学报, 1993, 16(12): 936-939. [16]张师超, 罗旭东. 一个模糊时态关系代数[J]. 软件学报, 1994, 5(9): 59-64. [17]张师超, 张钹. 间断区间时态逻辑的语义[J]. 计算机学报, 1996, 19(12): 948-952. DOI: 10.3321/j.issn:0254-4164. 1996.12.010. [18]ZHANG S C, LI J Y, ZHANG W Z, et al. Hyper-class representation of data[EB/OL]. (2022-01-28)[2022-03-10]. https://arxiv.org/abs/2201.13317. DOI: 10.48550/arXiv.2201.13317. [19]YUE W C, LIU X, LI S Y, et al. Knowledge representation and reasoning with industrial application using interval-valued intuitionistic fuzzy Petri nets and extended TOPSIS[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(4): 987-1013. DOI: 10.1007/s13042-020-01216-1. [20]MOROZ O V. Model of self-organizing knowledge representation and organizational knowledge transformation[J]. American Journal of Artificial Intelligence, 2020, 4(1): 1-19. DOI: 10.11648/j.ajai.20200401.11. [21]HUANG W M, HARRIE L. Towards knowledge-based geovisualisation using Semantic Web technologies: a knowledge representation approach coupling ontologies and rules[J]. International Journal of Digital Earth, 2020, 13(9): 976-997. DOI: 10.1080/17538947.2019.1604835. [22]ALLEN J F. Maintaining knowledge about temporal intervals[J]. Communications of the ACM, 1983, 26(11): 832-843. DOI: 10.1145/182.358434. [23]ALLEN J F. Towards a general theory of action and time[J]. Artificial Intelligence, 1984, 23(2): 123-154. DOI: 10.1016/0004-3702(84)90008-0. [24]ZHANG S C, ZHANG C Q. IMC: a method for interval calculus in matrix[J]. Knowledge and Information Systems, 1999, 1(2): 257-268. DOI: 10.1007/BF03325100. [25]ZHANG S C, ZHANG C Q. Propagating temporal relations of intervals by matrix[J]. Applied Artificial Intelligence, 2002, 16(1): 1-27. [26]ZHANG C Q, ZHANG S C, ZHANG Z L. Temporal constraint satisfaction in matrix method[J]. Applied Artificial Intelligence, 2003, 17(2): 135-154. DOI: 10.1080/713827103. [27]YANG T M, SHADLEN M N. Probabilistic reasoning by neurons[J]. Nature, 2007, 447(7148): 1075-1080. [28]SANTOS Jr E. On linear potential functions for approximating Bayesian computations[J]. Journal of the ACM, 1996, 43(3): 399-430. DOI: 10.1145/233551.233552. [29]ZHANG S C, ZHANG C Q. Encoding probability propagation in belief networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(4): 526-531. DOI: 10.1109/TSMCA.2002.804784. [30]ZHANG S C, LI X L, ZONG M, et al. Learning k for kNN classification[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 8(3): 43. DOI: 10.1145/2990508. [31]ZHANG S C, LI X L, ZONG M, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1774-1785. DOI: 10.1109/TNNLS.2017.2673241. [32]ZHANG S C, LI J Y. KNN classification with one-step computation[J/OL]. IEEE Transactions on Knowledge and Data Engineering[2022-03-10]. https://ieeexplore.ieee.org/document/9566737. DOI: 10.1109/TKDE.2021.3119140. [33]NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint l2,1-norms minimization[C]// Advances in Neural Information Processing Systems 23(NIPS 2010). Red Hook, NY: Curran Associates Inc., 2010: 1813-1821. [34]LI J Y, ZHANG S C, ZHANG L Y,et al. Unsupervised nonlinear feature selection algorithm via kernel function[J]. Neural Computing and Applications, 2020, 32(11): 6443-6454. DOI: 10.1007/s00521-018-3853-y. [35]YUN H W, YU J H, LEE S B. Three dimensional disaster monitoring of the Pohang earthquake in the Republic of Korea by Sentinel-L[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: IEEE Press, 2018: 2228-2230. DOI: 10.1109/IGARSS.2018.8517289. [36]BEYER K, GOLDSTEIN J, RAMAKRISHNAN R,et al. When is “nearest neighbor” meaningful?[C]// Database Theory-ICDT’99: LNCS Volume 1540. Berlin: Springer, 1999: 217-235. DOI: 10.1007/3-540-49257-7_15. [37]ILESANMI A E, ILESANMI T O. Methods for image denoising using convolutional neural network: a review[J]. Complex & Intelligent Systems, 2021, 7(5): 2179-2198. DOI: 10.1007/s40747-021-00428-4. [38]XIE J, COLONNA J G, ZHANG J L. Bioacoustic signal denoising: a review[J]. Artificial Intelligence Review, 2021, 54(5): 3575-3597. DOI: 10.1007/s10462-020-09932-4. [39]KIM J H, KIM T S, CHOI J H, et al. End-to-end multi-task learning of missing value imputation and forecasting in time-series data[C]// 2020 25th International Conference on Pattern Recognition (ICPR). Los Alamitos, CA: IEEE Computer Society, 2021: 8849-8856. DOI: 10.1109/ICPR48806.2021.9412112. [40]DONG W L, GAO S, YANG X B, et al. An exploration of online missing value imputation in non-stationary data stream[J]. SN Computer Science, 2021, 2(2): 57. DOI: 10.1007/s42979-021-00459-1. |
[1] | LU Guang-quan, XIE Yang-cai, LIU Xing, ZHANG Shi-chao. An Improvement Semi-supervised Learning Based on KNN Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 45-49. |
|