Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 1-23.doi: 10.16088/j.issn.1001-6600.2022021102
HE Qing, LIU Jian, WEI Lianfu*
CLC Number:
[1]EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7):071101. DOI:10.1063/1.3610677. [2]王成杰,石发展,王鹏飞,等.基于金刚石NV色心的纳米尺度磁场测量和成像技术[J]. 物理学报, 2018, 67(13):130701. DOI:10.7498/aps.67.20180243. [3]MAHONY D, BHATTACHARYYA S. Evaluation of highly entangled states in asymmetrically coupled three NV centers by quantum simulator[J]. Applied Physics Letters, 2021, 118(20): 204004. DOI:10.1063/5.0043334. [4]张正源, 张天乙, 刘宗凯,等. 里德堡原子多体相互作用的研究进展[J]. 物理学报, 2020, 69(18):180301. DOI:10.7498/aps.69.20200649. [5]JING M Y, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. DOI:10.1038/s41567-020-0918-5. [6]张博,贺青,杨欣达,等.共面波导型超导微波功分器:设计,制备和测试[J]. 物理学报, 2021, 70(15):158501. DOI:10.7498/aps.70.20210168. [7]韩金舸,欧阳鹏辉,李恩平,等.超导约瑟夫森结物理参数的实验推算[J]. 物理学报, 2021, 70(17):170304. DOI:10.7498/aps.70.20210393. [8]ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. DOI:10.1038/s41586-019-1666-5. [9]GONG M, WANG S Y, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952. [10]ZHU Q L, CAO S R, CHEN F S, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240-245. [11]KOOLSTRA G, YANG G, SCHUSTER D I. Coupling a single electron on superfluid Helium to a superconducting resonator[J]. Nature Communications, 2019, 10(1): 5323. DOI:10.1038/s41467-019-13335-7. [12]DYKMAN M I, KONO K, KONSTANTINOV D, et al. Ripplonic lamb shift for electrons on liquid Helium[J]. Physical Review Letters, 2017, 119(25): 256802. DOI:10.1103/PhysRevLett.119.256802. [13]MILLER A J, LITA A E, CALKINS B, et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent[J]. Optics Express, 2011, 19(10): 9102-9110. DOI:10.1364/OE.19.009102. [14]FUKUDA D, FUJII G, NUMATA T, et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling[J]. Optics Express, 2011, 19(2): 870-875. DOI:10.1364/OE.19.000870. [15]戴茂春,王轶文,戴越, 等. 一种超导单光子探测系统中光纤对准装置及光纤对准方法: CN201910066766.2[P].2020-04-07. [16]KIM J, TAKEUCHI S, YAMAMOTO Y, et al. Multiphoton detection using visible light photon counter[J]. Applied Physics Letters, 1999, 74(7): 902-904. DOI:10.1063/1.123404. [17]MEZZENA R, FAVERZANI M, FERRI E, et al. Development of microwave kinetic inductance detectors for IR single-photon counting[J]. Journal of Low Temperature Physics, 2020, 199(1): 73-79. DOI:10.1007/s10909-019-02251-1. [18]LITA A E, MILLER A J, NAM S W. Counting near-infrared single-photons with 95% efficiency[J]. Optics Express, 2008, 16(5): 3032-3040. DOI:10.1364/OE.16.003032. [19]GUNDACKER S, HEERING A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector[J]. Physics in Medicine and Biology, 2020, 65(17): 17TR01. DOI:10.1088/1361-6560/ab7b2d. [20]BECKER W. Advanced time-correlated single photon counting techniques[M]. Berlin: Springer,2005. [21]HAKAMATA T, KUME H, OKANO K, et al. Photomultiplier tubes: basics and applications[M]. 3rd ed. Hamamatsu: Hamamatsu Photonics K.K., 2007. [22]ZHANG L, CHITNIS D, CHUN H, et al. A comparison of APD-and SPAD-based receivers for visible light communications[J]. Journal of Lightwave Technology, 2018, 36(12): 2435-2442. DOI:10.1109/JLT.2018.2811180. [23]THOMAS O, YUAN Z L, DYNES J F, et al. Efficient photon number detection with silicon avalanche photodiodes[J]. Applied Physics Letters, 2010, 97(3): 031102. DOI:10.1063/1.3464556. [24]YANIKGONUL S, LEONG V, ONG J R, et al. Integrated avalanche photodetectors for visible light[J]. Nature Communications, 2021, 12(1): 1834. DOI:10.1038/s41467-021-22046-x. [25]FITCH M J, JACOBS B C, PITTMAN T B, et al. Photon-number resolution using time-multiplexed single-photon detectors[J]. Physical Review A, 2003, 68(4): 043814. DOI:10.1103/PhysRevA.68.043814. [26]YOU L X, LI H, ZHANG W J, et al. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths[J]. Superconductor Science and Technology, 2017, 30(8): 084008. DOI:10.1088/1361-6668/aa7495. [27]CHEN X H, HAN S, LU Y M, et al. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (201) orientation β-Ga2O3 deposited by the PLD method[J]. Journal of Alloys and Compounds, 2018, 747: 869-878. DOI:10.1016/j.jallcom.2018.03.094. [28]WANG Y Q, LI B P, REN P L, et al. Expansion of the response range of photoelectrochemical UV detector using an ITO/Ag-nanowire/quartz UV-visible transparent conductive electrode[J]. Journal of Materials Chemistry C, 2022, 10(11): 4157-4165. DOI:10.1039/D1TC05815K. [29]KALRA A, VURA S, RATHKANTHIWAR S, et al. Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal-heterojunction-metal broadband UV-A/UV-C detector[J]. Applied Physics Express, 2018, 11(6): 064101. DOI:10.7567/APEX.11.064101. [30]PAN X J, CHENG L K, CHEN L L, et al. A wire-like UV detector based on TiO2-coated ZnO nanotube arrays[J]. Science of Advanced Materials, 2019, 11(3): 392-395. DOI:10.1166/sam.2019.3451. [31]SU L L, ZHOU D, LU H, et al. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802. DOI:10.1088/1674-4926/40/12/121802. [32]MUÑOZ E, MONROY E, PAU J L, et al. III nitrides and UV detection[J]. Journal of Physics: Condensed Matter, 2001, 13(32): 7115. DOI:10.1088/0953-8984/13/32/316. [33]PAU J L, MCCLINTOCK R, MINDER K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes[J]. Applied Physics Letters, 2007, 91(4): 041104. DOI:10.1063/1.2759980. [34]YAN F, LUO Y, ZHAO J H, et al. 4H-SiC visible blind UV avalanche photodiode[J]. Electronics Letters, 1999, 35(11): 929-930. DOI:10.1049/el:19990641. [35]XIN X, YAN F, ALEXANDROVE P, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode[J]. Electronics Letters, 2005, 41(4): 212-214. DOI:10.1049/el:20057320. [36]BECK A L, KARVE G, WANG S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1507-1509. [37]LI L H, ZHOU D, LU H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger mode[J]. IEEE Photonics Journal, 2017, 9(5): 1-7. [38]ROSCHKE M, SCHWIERZ F. Electron mobility models for 4H, 6H, and 3C SiC [MESFETs][J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1442-1447. [39]PEARTON S J, ZOLPER J C, SHUL R J, et al. GaN: Processing, defects, and devices[J]. Journal of Applied Physics, 1999, 86(1): 1-78. DOI:10.1063/1.371145. [40]MONROY E, OMNÈS F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33. DOI:10.1088/0268-1242/18/4/201. [41]POWELL A R, ROWLAND L B. SiC materials-progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955. [42]CHUNNILALL C J, DEGIOVANNI I P, KÜCK S, et al. Metrology of single-photon sources and detectors: a review[J]. Optical Engineering, 2014, 53(8): 081910. [43]KIRDODA J, DUMAS D C S, MILLAR R W, et al. Geiger mode Ge-on-Si single-photon avalanche diode detectors[C]//2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). Piscataway,NJ:IEEE, 2019. [44]THORBURN F E, HUDDLESTON L L, KIRDODA J, et al. High efficiency planar geometry germanium-on-silicon single-photon avalanche diode detectors[C]// Proceedings of the SPIE 11386, Advanced Photon Counting Techniques XIV. Bellingham,WA:SPIE, 2020: 113860N. [45]LLIN L F, KIRDODA J, THORBURN F, et al. High sensitivity Ge-on-Si single-photon avalanche diode detectors[J]. Optics Letters, 2020, 45(23): 6406-6409. DOI:10.1364/OL.396756. [46]SIGNORELLI F, TELESCA F, TOSI A. Photon detection efficiency simulation of InGaAs/InP SPAD[C]// 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Piscataway,NJ: IEEE, 2020. [47]WANG C, WANG J Y, XU Z Y, et al. Design considerations of InGaAs/InP single-photon avalanche diode for photon-counting communication[J]. Optik, 2019, 185: 1134-1145. DOI:10.1016/j.ijleo.2019.04.053. [48]BLAKE P, HILL E W, CASTRO NETO A H, et al. Making graphene visible[J]. Applied Physics Letters, 2007, 91(6): 063124. DOI:10.1063/1.2768624. [49]WARBURTON R E, ITZLER M, BULLER G S. Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode[J]. Applied Physics Letters, 2009, 94(7): 071116. DOI:10.1063/1.3079668. [50]CAMPBELL J C, TSANG W T, QUA G J, et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy[J]. IEEE Journal of Quantum Electronics, 1988, 24(3): 496-500. [51]ITZLER M A, BEN-MICHAEL R, HSU C F, et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications[J]. Journal of Modern Optics, 2007, 54(2/3): 283-304. DOI:10.1080/09500340600792291. [52]JIANG X, ITZLER M A, BEN-MICHAEL R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895-905. [53]ITZLER M A, JIANG X D, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200. [54]ASSEFA S, XIA F N, VLASOV Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects[J]. Nature, 2010, 464(7285): 80-84. DOI:10.1038/nature08813. [55]李春光, 王佳, 吴云, 等. 中国超导电子学研究及应用进展[J]. 物理学报, 2021, 70(1): 018501. DOI:10.7498/aps.70.20202121. [56]刘剑, 黄典, 贺青,等. 基于光子数可分辨探测器的单脉冲光子数检测[J]. 激光技术, 2022, 46(1):58-63. DOI:10.7510/jgjs.issn.1001-3806.2022.01.004. [57]GOL’TSMAN G N, OKUNEV O, CHULKOVA G, et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 2001, 79(6): 705-707. DOI:10.1063/1.1388868. [58]尤立星.光量子信息利器:超导纳米线单光子探测器[J]. 物理, 2021, 50(10): 678-683. DOI:10.7693/wl20211004. [59]DAY P K, LEDUC H G, MAZIN B A, et al. A broadband superconducting detector suitable for use in large arrays[J]. Nature, 2003, 425(6960): 817-821. DOI:10.1038/nature02037. [60]YOU L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 2020, 9(9): 2673-2692. DOI:10.1515/nanoph-2020-0186. [61]ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. DOI:10.1126/science.abe8770. [62]史生才,李婧. 超导隧道结在事件视界望远镜黑洞成像及射电天文中的应用[J]. 科学通报, 2019, 64(20): 2067-2069. DOI:10.1360/TB-2019-0073. [63]DE SIMONI G, STRAMBINI E, MOODERA J S, et al. Toward the absolute spin-valve effect in superconducting tunnel junctions[J]. Nano Letters, 2018, 18(10): 6369-6374. DOI:10.1021/acs.nanolett.8b02723. [64]WANG Y W, ZHOU P J, WEI L F, et al. Photon-detections via probing the switching current shifts of Josephson junctions[J]. Physica C: Superconductivity and Its Applications, 2015, 515: 49-53. DOI:10.1016/j.physc.2015.05.005. [65]WALSH E D, JUNG W, LEE G H, et al. Josephson junction infrared single-photon detector[J]. Science, 2021, 372(6540): 409-412. DOI:10.1126/science.abf5539. [66]黄典, 戴万霖, 王轶文,等. 超导动态电感单光子探测器的噪声处理[J]. 物理学报, 2021, 70(14): 140703. DOI:10.7498/aps.70.20210185. [67]LI H J, WANG Y W, WEI L F, et al. Experimental demonstrations of high-Q superconducting coplanar waveguide resonators[J]. Chinese Science Bulletin, 2013, 58(20): 2413-2417. DOI:10.1007/s11434-013-5882-3. [68]GUO W, LIU X, WANG Y, et al. Counting near infrared photons with microwave kinetic inductance detectors[J]. Applied Physics Letters, 2017, 110(21): 212601. DOI:10.1063/1.4984134. [69]LIU X, GUO W, WANG Y, et al. Superconducting micro-resonator arrays with ideal frequency spacing[J]. Applied Physics Letters, 2017, 111(25): 252601. DOI:10.1063/1.5016190. [70]LIU X, GUO W, WANG Y, et al. Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays[J]. Journal of Applied Physics, 2017, 122(3): 034502. DOI: 10.1063/1.4994170. [71]徐达, 钟青, 曹文会,等.二阶梯度交叉耦合超导量子干涉仪电流传感器研制[J]. 物理学报, 2021, 70(12): 128501. DOI:10.7498/aps.70.20201816. [72]SCHLOTTMANN E, VON HELVERSEN M, LEYMANN H A M, et al. Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor[J]. Physical Review Applied, 2018, 9(6): 064030. DOI:10.1103/PhysRevApplied.9.064030. [73]ROSENBERG D, LITA A E, MILLER A J, et al. Noise-free high-efficiency photon-number-resolving detectors[J]. Physical Review A, 2005, 71(6): 061803. [74]尤立星, 张腊宝, 史生才,等. 高性能单光子探测技术研究进展[J]. 中国基础科学, 2020,22(1): 25-29. DOI:10.3969/j.issn.1009-2412.2020.01.04. [75]吴静远, 刘肇国, 张彤. 高增益红外单光子探测技术研究进展[J]. 红外与激光工程, 2021, 50(1): 161-170. DOI:10.3788/IRLA20211016. [76]JONES M L, WILKES G J, VARCOE B T H. Single microwave photon detection in the micromaser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42(14): 145501. DOI:10.1088/0953-4075/42/14/145501. [77]HAROCHE S, BRUNE M, RAIMOND J M. From cavity to circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 243-246. DOI:10.1038/s41567-020-0812-1. [78]FRAGNER A, GÖPPL M, FINK J M, et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift[J]. Science, 2008, 322(5906): 1357-1360. DOI:10.1126/science.1164482. [79]SCHUSTER D I, HOUCK A A, SCHREIER J A, et al. Resolving photon number states in a superconducting circuit[J]. Nature, 2007, 445(7127): 515-518. DOI: 10.1038/nature05461. [80]CHEN Y F, HOVER D, SENDELBACH S, et al. Microwave photon counter based on Josephson junctions[J]. Physical Review Letters, 2011, 107(21): 217401. DOI:10.1103/PhysRevLett.107.217401. [81]INOMATA K, LIN Z R, KOSHINO K, et al. Single microwave-photon detector using an artificial Λ-type three-level system[J]. Nature Communications, 2016, 7(1): 12303. DOI:10.1038/ncomms12303. [82]ROMERO G, GARCÍA-RIPOLL J J, SOLANO E. Microwave photon detector in circuit QED[J]. Physical Review Letters, 2009, 102(17): 173602. DOI:10.1103/PhysRevLett.102.173602. [83]郭婷婷,潘佳政,孙国柱,等.行波微波光子探测[J].微波学报,2021(S1):258-261. |
No related articles found! |
|