Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 49-58.doi: 10.16088/j.issn.1001-6600.2022012003

Previous Articles     Next Articles

Review on Chaotic Image Encryption Based on Compressed Sensing

LIANG Yuting, LUO Yuling*, ZHANG Shunsheng   

  1. School of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-01-20 Revised:2022-03-14 Online:2022-09-25 Published:2022-10-18

Abstract: Digital image is an important information carrier in the current network environment. Once the image containing confidential information is attacked or stolen, it is very likely to bring about information security problems. Therefore, it is urgent to take effective protection schemes for image information. Takingimage data security and transmission efficiency into account,chaotic image encryption algorithm based on compressed sensinghas high value of research and application. This paper first introduces the basic principles of chaos theory, image encryption and compressed sensing. Then, the characteristics and advantages of several principal methods of chaotic image encryption based on compressed sensing are analyzed. In addition, the status quo of the current research is summarized. Finally, the remaining problems are discussed and the trend of future development is forecasted.

Key words: digital image, information security, compressed sensing, chaos, image encryption

CLC Number: 

  • TP309.7
[1]庄志本, 李军, 刘静漪,等. 基于新的五维多环多翼超混沌系统的图像加密算法[J]. 物理学报, 2020, 69(4): 040502. DOI:10.7498/aps.69.20191342.
[2]张雷, 陈川, 谭淇匀,等. 结合S盒与混沌映射的图像加密算法[J]. 北京邮电大学学报, 2021, 44(6): 40-47. DOI:10.13190/j.jbupt.2021-061.
[3]葛滨, 陈旭, 陈刚. 向量运算加速的超混沌图像加密算法[J]. 西安电子科技大学学报, 2021, 48(6): 187-196. DOI:10.19665/j.issn1001-2400.2021.06.023.
[4]李蓝航, 丘森辉, 王文仪,等. 基于混沌映射的彩色图像多层交互加密算法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 72-86. DOI:10.16088/j.issn.1001-6600.2020121603.
[5]石航, 王丽丹. 一种基于压缩感知和多维混沌系统的多过程图像加密方案[J]. 物理学报, 2019, 68(20): 200501. DOI:10.7498/aps.68.20190553.
[6]蒋东华, 朱礼亚, 沈子懿,等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022, 56(2): 139-148.
[7]CHEN J X, ZHANG Y, QI L, et al. Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression[J]. Optics & Laser Technology, 2018, 99: 238-248.
[8]DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI:10.1109/TIT.2006.871582.
[9]LORENZ E N. Deterministic nonperiodic flow[J]. Journal of Atmospheric Sciences, 1963, 20(2): 130-141. DOI:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
[10]MATTHEWS R. On the derivation of a “chaotic” encryption algorithm[J]. Cryptologia, 1989, 13(1): 29-42. DOI:10.1080/0161-118991863745.
[11]HABUTSU T, NISHIO Y, SASASE I, et al. A secret key cryptosystem by iterating a chaotic map[J]. Lecture Notes in Computer Science, 1991, 547(1): 127-140.
[12]FRIDRICH J. Symmetric ciphers based on two-dimensional chaotic maps[J]. International Journal of Bifurcation and Chaos, 1998, 8(6): 1259-1284. DOI:10.1142/S021812749800098X.
[13]HUA Z Y, ZHOU Y C, HUANG H J. Cosine-transform-based chaotic system for image encryption[J]. Information Sciences, 2019, 480: 403-419. DOI:10.1016/j.ins.2018.12.048.
[14]LUO Y L, CAO L C, QIU S H, et al. A chaotic map-control-based and the plain image-related cryptosystem[J]. Nonlinear Dynamics, 2016, 83(4): 2293-2310. DOI:10.1007/s11071-015-2481-7.
[15]班多晗, 吕鑫, 王鑫元. 基于一维混沌映射的高效图像加密算法[J]. 计算机科学, 2020, 47(4): 278-284. DOI:10.11896/jsjkx.190600059.
[16]田军锋, 彭静静, 左宪禹,等. 基于循环移位和多混沌映射的图像加密算法[J]. 计算机科学, 2020, 47(10): 327-331. DOI:10.11896/jsjkx.190800003.
[17]HUA Z Y, JIN F, XU B X, et al. 2D Logistic-sine-coupling map for image encryption[J]. Signal Processing, 2018, 149: 148-161.
[18]CHEN C, SUN K H, HE S B. An improved image encryption algorithm with finite computing precision[J]. Signal Processing, 2020, 168: 107340. DOI:10.1016/j.sigpro.2019.107340.
[19]LUO Y L, ZHOU R L, LIU J X, et al. An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers[J]. Multimedia Tools and Applications, 2018, 77(20): 26191-26217. DOI:10.1007/s11042-018-5844-5.
[20]罗玉玲, 欧阳雪, 曹绿晨,等. 遗传模拟退火算法和混沌系统的图像加密方法[J]. 西安电子科技大学学报, 2019, 46(5): 171-179. DOI:10.19665/j.issn1001-2400.2019.05.024.
[21]LUO Y L, ZHOU R L, LIU J X. A novel image encryption scheme based on Kepler’s third law and random Hadamard transform[J]. Chinese Physics B, 2017, 26(12): 120504. DOI:10.1088/1674-1056/26/12/120504.
[22]LUO Y L, TANG S B, QIN X S, et al. A double-image encryption scheme based on amplitude-phase encoding and discrete complex random transformation[J]. IEEE Access, 2018, 6: 77740-77753. DOI:10.1109/ACCESS.2018.2884013.
[23]周红亮, 刘洪娟. 结合DNA编码的快速混沌图像加密算法[J]. 东北大学学报(自然科学版), 2021, 42(10): 1391-1399. DOI:10.12068/j.issn.1005-3026.2021.10.004.
[24]YUAN L G, ZHENG S, ALAM Z. Dynamics analysis and cryptographic application of fractional logistic map[J]. Nonlinear Dynamics, 2019, 96(1): 615-636. DOI:10.1007/s11071-019-04810-3.
[25]CHEN L P, YIN H, HUANG T W, et al. Chaos in fractional-order discrete neural networks with application to image encryption[J]. Neural Networks, 2020, 125: 174-184. DOI:10.1016/j.neunet.2020.02.008.
[26]刘思聪, 李春彪, 李泳新. 基于指数-余弦离散混沌映射的图像加密算法研究[J]. 电子与信息学报, 2022, 44(5): 1754-1762.
[27]RACHLIN Y, BARON R D. The secrecy of compressed sensing measurements[C]// 2008 46th Annual Allerton Conference on Communication, Control, and Computing. Piscataway, NJ: IEEE, 2008: 813-817. DOI: 10.1109/ALLERTON.2008.4797641.
[28]ZHANG L Y, WONG K W, ZHANG Y S, et al. Bi-level protected compressive sampling[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1720-1732. DOI:10.1109/TMM.2016.2581593.
[29]HUANG H, HE X, XIANG Y, et al. A compression-diffusion-permutation strategy for securing image[J]. Signal Processing, 2018, 150: 183-190. DOI:10.1016/j.sigpro.2018.04.014.
[30]FANG H, VOROBYOV S A, JIANG H, et al. Permutation meets parallel compressed sensing: how to relax restricted isometry property for 2D sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(1): 196-210. DOI:10.1109/TSP.2013.2284762.
[31]XU Q Y, SUN K H, HE S B, et al. An effective image encryption algorithm based on compressive sensing and 2D-SLIM[J]. Optics and Lasers in Engineering, 2020, 134: 106178. DOI:10.1016/j.optlaseng.2020.106178.
[32]CHAI X L, BI J Q, GAN Z H, et al. Color image compression and encryption scheme based on compressive sensing and double random encryption strategy[J]. Signal Processing, 2020, 176: 107684. DOI:10.1016/j.sigpro.2020.107684.
[33]GAN Z H, CHAI X L, ZHANG J T, et al. An effective image compression-encryption scheme based on compressive sensing (CS) and game of life (GOL)[J]. Neural Computing and Applications, 2020, 32(17): 14113-14141. DOI:10.1007/s00521-020-04808-8.
[34]GONG L H, QIU K D, DENG C Z, et al. An image compression and encryption algorithm based on chaotic system & compressive sensing[J]. Optics & Laser Technology, 2019, 115: 257-267. DOI:10.1016/j.optlastec.2019.01.039.
[35]XU Q Y, SUN K H, CAO C, et al. A fast image encryption algorithm based on compressive sensing and hyperchaotic map[J]. Optics and Lasers in Engineering, 2019, 121: 203-214. DOI:10.1016/j.optlaseng.2019.04.011.
[36]LU P, XU Z Y, LU X, et al. Digital image information encryption based on compressive sensing and double random-phase encoding technique[J]. Optik, 2013, 124(16): 2514-2518. DOI:10.1016/j.ijleo.2012.08.017.
[37]ZHOU N R, ZHANG A D, ZHENG F, et al. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing[J]. Optics & Laser Technology, 2014, 62: 152-160. DOI:10.1016/j.optlastec.2014.02.015.
[38]LUO Y L, LIN J, LIU J X, et al. A robust image encryption algorithm based on Chua’s circuit and compressive sensing[J]. Signal Processing, 2019, 161: 227-247. DOI:10.1016/j.sigpro.2019.03.022.
[39]杜鑫昌, 高瑜翔, 曹远杰,等. 基于混沌压缩感知和DNA编码的多图像加密算法[J]. 无线电工程, 2022, 52(3): 476-483.
[40]ZHU S Q, ZHU C X. A new image compression-encryption scheme based on compressive sensing and cyclic shift[J]. Multimedia Tools and Applications, 2019, 78(15): 20855-20875. DOI:10.1007/s11042-019-7405-y.
[41]GAN L. Block compressed sensing of natural images[C]// 2007 15th International Conference on Digital Signal Processing. Piscataway, NJ: IEEE, 2007: 403-406. DOI:10.1109/ICDSP.2007.4288604.
[42]ZHANG Y S, ZHOU J T, CHEN F, et al. A block compressive sensing based scalable encryption framework for protecting significant image regions[J]. International Journal of Bifurcation and Chaos, 2016, 26(11): 1650191. DOI:10.1142/S0218127416501911.
[43]ZHU L Y, SONG H S, ZHANG X, et al. A novel image encryption scheme based on nonuniform sampling in block compressive sensing[J]. IEEE Access, 2019, 7: 22161-22174. DOI:10.1109/ACCESS.2019.2897721.
[44]CHAI X L, FU X L, GAN Z H, et al. An efficient chaos-based image compression and encryption scheme using block compressive sensing and elementary cellular automata[J]. Neural Computing and Applications, 2020, 32(9): 4961-4988.
[45]ZHU L Y, SONG H S, ZHANG X, et al. A robust meaningful image encryption scheme based on block compressive sensing and SVD embedding[J]. Signal Processing, 2020, 175: 107629. DOI:10.1016/j.sigpro.2020.107629.
[46]CHEN G, LI D F, ZHANG J S. Iterative gradient projection algorithm for two-dimensional compressive sensing sparse image reconstruction[J]. Signal Processing, 2014, 104: 15-26. DOI:10.1016/j.sigpro.2014.03.039.
[47]EFTEKHARI A, BABAIE-ZADEH M, MOGHADDAM H A. Two-dimensional random projection[J]. Signal Processing, 2011, 91(7): 1589-1603. DOI:10.1016/j.sigpro.2011.01.002.
[48]ZHOU N R, LI H L, WANG D, et al. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform[J]. Optics Communications, 2015, 343: 10-21. DOI:10.1016/j.optcom.2014.12.084.
[49]ZHOU N R, PAN S M, CHENG S, et al. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing[J]. Optics & Laser Technology, 2016, 82: 121-133. DOI:10.1016/j.optlastec.2016.02.018.
[50]GAN Z H, BI J Q, DING W K, et al. Exploiting 2D compressed sensing and information entropy for secure color image compression and encryption[J]. Neural Computing and Applications, 2021, 33(19): 12845-12867. DOI:10.1007/s00521-021-05937-4.
[51]CHAI X L, WU H Y, GAN Z H, et al. An efficient approach for encrypting double color images into a visually meaningful cipher image using 2D compressive sensing[J]. Information Sciences, 2021, 556: 305-340. DOI:10.1016/j.ins.2020.10.007.
[52]ZHOU Y C, AGAIAN S. Image encryption using the image steganography concept and PLIP model[C]// Proceedings of 2011 International Conference on System Science and Engineering. Piscataway, NJ: IEEE, 2011: 699-703. DOI:10.1109/ICSSE.2011.5961993.
[53]BAO L, ZHOU Y C. Image encryption: Generating visually meaningful encrypted images[J]. Information Sciences, 2015, 324: 197-207. DOI:10.1016/j.ins.2015.06.049.
[54]KANSO A, GHEBLEH M. An algorithm for encryption of secret images into meaningful images[J]. Optics and Lasers in Engineering, 2017, 90: 196-208. DOI:10.1016/j.optlaseng.2016.10.009.
[55]WEN W Y, ZHANG Y S, FANG Y M, et al. Image salient regions encryption for generating visually meaningful ciphertext image[J]. Neural Computing and Applications, 2018, 29(3): 653-663. DOI:10.1007/s00521-016-2490-6.
[56]CHAI X L, GAN Z H, CHEN Y R, et al. A visually secure image encryption scheme based on compressive sensing[J]. Signal Processing, 2017, 134: 35-51. DOI:10.1016/j.sigpro.2016.11.016.
[57]WANG H, XIAO D, LI M, et al. A visually secure image encryption scheme based on parallel compressive sensing[J]. Signal Processing, 2019, 155(1): 218-232. DOI:10.1016/j.sigpro.2018.10.001.
[58]CHAI X L, WU H Y, GAN Z H, et al. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding[J]. Optics and Lasers in Engineering, 2020, 124: 105837. DOI:10.1016/j.optlaseng.2019.105837.
[59]JIANG D H, LIU L D, ZHU L Y, et al. Double-image visually meaningful encryption algorithm based on compressed sensing and FRFT embedding[J/OL]. Research Square: 1-23[2022-01-20]. https://doi.org/10.21203/rs.3.rs-291468/v1.
[60]WANG X Y, LIU C, JIANG D H. A novel triple-image encryption and hiding algorithm based on chaos, compressive sensing and 3D DCT[J]. Information Sciences, 2021, 574: 505-527. DOI:10.1016/j.ins.2021.06.032.
[61]YE G D, PAN C, DONG Y X, et al. Image encryption and hiding algorithm based on compressive sensing and random numbers insertion[J]. Signal Processing, 2020, 172: 107563. DOI:10.1016/j.sigpro.2020.107563.
[62]WEN W Y, HONG Y K, FANG Y M, et al. A visually secure image encryption scheme based on semi-tensor product compressed sensing[J]. Signal Processing, 2020, 173: 107580. DOI:10.1016/j.sigpro.2020.107580.
[63]HUA Z Y, ZHANG K Y, LI Y M, et al. Visually secure image encryption using adaptive-thresholding sparsification and parallel compressive sensing[J]. Signal Processing, 2021, 183: 107998. DOI:10.1016/j.sigpro.2021.107998.
[64]WANG K S, WU X J, GAO T G. Double color images compression-encryption via compressive sensing[J]. Neural Computing and Applications, 2021, 33(19): 12755-12776. DOI:10.1007/s00521-021-05921-y.
[1] LI Lanhang, QIU Senhui, WANG Wenyi, XIAO Dingwei, LUO Yuling. Multi-layer Interactive Color Image Encryption Algorithm Based on Chaotic Map [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 72-86.
[2] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1-8.
[4] LI Lanhang, QIU Senhui, XIAO Dingwei, LI Liangjia, OUYANG Xue, LUO Yuling. Image Encryption Algorithm Based on DNA Sequence and Dynamic Index Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 40-53.
[5] WU Lei, YANG Zhi, ZHANG Lei, BAI Kezhao. Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 62-70.
[6] ZHOU Ronglong,LUO Yuling,BI Jinjie,CEN Mingcan,QIU Senhui,LIAO Zhixian. Applications of Image Parallel Encryption Algorithm in Handheld Devices [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 60-70.
[7] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[8] WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51.
[9] WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27.
[10] YU Chunqiang , FU Rui , CHEN Yan , LEI Yun , ZHANG Xianquan , WANG Xiaoyun. Protecting Method of Regions of Interest of ImageBased on Information Hiding [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 67-73.
[11] XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41.
[12] KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70.
[13] LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12.
[14] GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8.
[15] LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .
[10] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72 -89 .