Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 44-51.doi: 10.16088/j.issn.1001-6600.2019.02.006

Previous Articles     Next Articles

Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem

WU Lei1, YANG Li2, LI Qishang1, XIAO Huapeng2*   

  1. 1.Department of Teaching and Research, 95795 Troops of the PLA, Guilin Guangxi 541003, China;
    2.College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-07-14 Online:2019-04-25 Published:2019-04-28

Abstract: Since the synchronous reluctance motor will appear chaotic motion under certain conditions, the problem of how to stabilize chaotic motion in the synchronous reluctance motor is studied. In this paper,the bifurcation diagram is used to analyze the way of chaos for synchronous reluctance motor. The Poincare map reveals the fractal structure of the chaotic attractor of synchronous reluctance motor. And the local stability of the equilibrium point of the system is analyzed. Then a simple feedback controller is designed based on the small gain theorem of the input state stability system. The stabilization control of 5 equilibrium points of a synchronous reluctance motor is realized.

Key words: synchronous reluctance motor, small gain theorem, chaos control, Lyapunov function

CLC Number: 

  • O415.5
[1] CHUA L O,KOMURO M,MATSUMOTO T. The double scroll family[J]. IEEE Trans Circuits Syst,1986,33(11):1072-1118.
[2] GAO Y,CHAU K T. Hopf bifurcation and chaos in synchronous reluctance motor drives[J]. IEEE Trans Energy Conversion,2004,19(2):296-302.
[3] ZHANG B,QIU D,XIE F. Stability analysis of the coupled synchronous reluctance motor drives[J]. IEEE Trans Circuits Syst II Express Briefs, 2017,64(2):196-200.
[4] 吴雷,马姝靓,肖华鹏,等. 基于反馈线性化法的同步磁阻电机跟踪控制[J].广西师范大学学报(自然科学版),2017,35(4):10-16.
[5] 余红英,赵少雄,杨臻.同步磁阻电机自适应混沌同步控制仿真研究[J].计算机测量与控制,2016,24(11):67-70.
[6] 刘辉昭,陈晓霞. 分数阶同步磁阻电机的混沌与控制[J].河南师范大学学报(自然科学版),2017,45(4):47-52.
[7] ISIDORI A. Nonlinear control system Ⅱ[M].Berlin:Springer-Verlag,1999:1-13.
[8] 陈昌忠,何平.Victor-Carmen混沌系统的投影同步[J].华中师范大学学报(自然科学版),2016,50(4):521-524.
[9] XIAO J. Anti-synchronization of a new hyperchaotic system via small-gain theorem[J]. Chin Phys B,2010,19(10):100505.
[10] 文慧,张天平,朱秋琴.基于小增益定理的非线性系统的自适应动态面控制[J]. 东南大学学报(自然科学版),2008,38(2):145-149.
[11] ZHANG F,CHEN R. Dynamics of a new 5D hyperchaotic system of Lorenz type[J]. International Journal of Bifurcation and Chaos,2018,28(3):1850036 .
[12] BARBOZA R. On Lorenz and Chen systems[J]. International Journal of Bifurcation and Chaos,2018,28 (1):1850018.
[13] LAIPHRAKPAM D S,KHUMANTHEM M S. Cryptanalysis of symmetric key image encryption using chaotic Rossler system[J]. Optik,2017,135:200-209.
[14] BAO B,MA J. Dynamic game behavior of retailers considering the quality of substitute products based on delay decision[J]. International Journal of Bifurcation and Chaos,2018,27(13):1750206.
[15] GAO S,DONG H,NING B. Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification[J].Iet Control Theory and Applications,2018,12 (6):819-827.
[1] ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70.
[2] WU Lei, MA Shujing, XIAO Huapeng, TANG Wen. Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 10-16.
[3] ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!