Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 445-456.doi: 10.16088/j.issn.1001-6600.2021123007
LIU Junchen1, HUANG Haoran1, GE Chunyu1, WANG Hongqiang2*, FANG Yueping1*
CLC Number:
[1]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [2]MAO Z Y, CHEN J J, YANG Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12427-12435. [3]贾永豪, 崔康平, 黄千里. WO3/g-C3N4异质结光催化剂的制备和光催化活性探究[J]. 环境科学学报, 2021, 41(12): 4852-4861. [4]TAN H Q, ZHAO Z, ZHU W B, et al.Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19184-19190. [5]DONG P Y, HOU G H, XI X G, et al.WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications[J].Environmental Science: Nano,2017, 4(3): 539-557. [6]MA C C, LEE J, KIM Y, et al.Rational design of α-Fe2O3 nanocubes supported BiVO4 Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light[J].Journal of Colloid and Interface Science,2021, 581(Pt B): 514-522. [7]鲍家俊,陈国明,王露,等.BiVO4纳米纤维的制备与光催化性能研究[J].广州化工,2021, 49(21): 28-30, 34. [8]DENG H Z, FEI X G, YANG Y, et al.S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J].Chemical Engineering Journal,2021, 409: 127377. [9]HAO X Q, ZHOU J, CUI Z W, et al.Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production[J].Applied Catalysis B: Environmental,2018, 229: 41-51. [10]KARTHIKEYAN C, ARUNACHALAM P, RAMACHANDRAN K, et al.Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J].Journal of Alloys and Compounds,2020, 828: 154281. [11]许铭冬, 李文强, 刘顺, 等. PbTiO3-CdS纳米复合材料的制备及其微结构和光催化性能[J]. 浙江理工大学学报(自然科学版), 2022, 47(3): 340-347. [12]ZUBAIR M, VANHAECKE E M M, SVENUM I H, et al.Core-shell particles of C-doped CdS and graphene: a noble metal-free approach for efficient photocatalytic H2 generation[J].Green Energy and Environment,2020, 5(4): 461-472. [13]LI S S, WANG L, LI Y D, et al.Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution[J]. Applied Catalysis B: Environmental,2019, 254: 145-155. [14]GUO C F, TIAN K F, WANG L, et al.Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production[J].Journal of Colloid and Interface Science, 2021, 583: 661-671. [15]YANG J H, WANG D E, HAN H X, et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Accounts of Chemical Research, 2013, 46(8): 1900-1909. [16]LI J J, WEI W, MU C, et al.Electronic properties of g-C3N4/CdS heterojunction from the first-principles[J].Physica E: Low-dimensional Systems and Nanostructures, 2018, 103: 459-463. [17]郭俊兰,梁英华,王欢,等.光催化制氢的助催化剂[J].化学进展,2021, 33(7): 1100-1114. [18]YANG J H, YAN H J, WANG X L, et al.Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production[J].Journal of Catalysis,2012, 290: 151-157. [19]WANG P, SHENG Y, WANG F Z, et al.Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: a case study of CdS-Au photocatalyst[J].Applied Catalysis B: Environmental,2018, 220: 561-569. [20]ZHANG C, LIU B Q, LI W P, et al.A well-designed honeycomb Co3O4@CdS photocatalyst derived from cobalt foam for high-efficiency visible-light H2 evolution[J].Journal of Materials Chemistry A,2021, 9(19): 11665-11673. [21]LIANG Z Z, SHEN R C, NG Y H, et al.A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J].Journal of Materials Science and Technology,2020, 56: 89-121. [22]纪丁愈,熊明彪,刘冬,等.MoS2/g-C3N4复合纳米催化剂光催化深度处理造纸废水研究[J].中国造纸,2021, 40(10): 57-62. [23]WANG L, GENG X L, ZHANG L, et al.Effects of various alcohol sacrificial agents on hydrogen evolution based on CoS2@SCN nanomaterials and its mechanism[J].Chemosphere,2022, 286: 131558. [24]GONG S Q, JIANG Z J, SHI P H, et al.Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride[J].Applied Catalysis B: Environmental, 2018, 238: 318-327. [25]WANG Z Q, LI L F, LIU M Z, et al.A new phosphidation route for the synthesis of NiPx and their cocatalytic performances for photocatalytic hydrogen evolution over g-C3N4[J].Journal of Energy Chemistry,2020, 48: 241-249. [26]ZONG S C, TIAN L, GUAN X J, et al.Photocatalytic overall water splitting without noble-metal: decorating CoP on Al-doped SrTiO3[J].Journal of Colloid and Interface Science,2022, 606: 491-499. [27]YANG F, LIU D Z, LI Y X, et al.Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production[J].Chemical Engineering Journal,2021, 406: 126838. [28]IRFAN R M, TAHIR M H, IQBAL S, et al.Co3C as a promising cocatalyst for superior photocatalytic H2 production based on swift electron transfer processes[J].Journal of Materials Chemistry C,2021, 9(9): 3145-3154. [29]SHEN R C, DING Y N, LI S B, et al.Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution[J].Chinese Journal of Catalysis,2021, 42(1): 25-36. [30]吝美霞,李法云,王玮,等.生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J].环境科学学报,2021, 41(8): 3200-3210. [31]SHI R, YE H F, LIANG F, et al.Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents[J].Advanced Materials,2018, 30(6): 1705941. [32]ZHOU P, ZHANG Q H, XU Z K, et al.Atomically dispersed Co-P3 on CdS nanorods with electron-rich feature boosts photocatalysis[J].Advanced Materials,2020, 32(7): 1904249. [33]ZHUGE K X, CHEN Z J, YANG Y Q, et al. In-suit photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H2 evolution[J].Applied Surface Science,2021, 539:148234. [34]MA S, XIE J, WEN J Q, et al.Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation[J].Applied Surface Science,2017, 391: 580-591. [35]GUO C F, LI L, CHEN F, et al.One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water[J].Journal of Colloid and Interface Science,2021, 596: 431-441. [36]YIN X L, LI L L, LI D C, et al.Noble-metal-free CdS@MoS2 core-shell nanoheterostructures for efficient and stabilized visible-light-driven H2 generation[J].International Journal of Hydrogen Energy,2019, 44(31): 16657-16666. [37]ISHIKAWA A, TAKATA T, KONDO J N, et al.Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J].Journal of the American Chemical Society,2002, 124(45): 13547-13553. [38]WANG Y P, WANG G R, ZHANG L J, et al.Hydroxides Ni(OH)2 & Ce(OH)3 as a novel hole storage layer for enhanced photocatalytic hydrogen evolution[J].Dalton Transactions,2019, 48(47): 17660-17672. [39]LI P X, ZHAO H, YAN X Y, et al.Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures[J].Science China Materials,2020, 63(11): 2239-2250. [40]PAN J Q, WANG P H, WANG P P, et al.The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core-shell heterojunction via the HER/OER matching of Pt/MnOx[J].Chemical Engineering Journal,2021, 405: 126622. [41]WEI D Q, DING Y, LI Z H. Noble-metal-free Z-Scheme MoS2-CdS/WO3-MnO2 nanocomposites for photocatalytic overall water splitting under visible light[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17320-17328. [42]ZHU C, LIU C G, ZHOU Y J, et al. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting[J]. Applied Catalysis B: Environmental, 2017, 216: 114-121. [43]SOLAKIDOU M, GIANNAKAS A, GEORGIOU Y, et al. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: interplay between CdS photo corrosion and TiO2-dopping[J]. Applied Catalysis B: Environmental, 2019, 254:194-205. [44]ZHEN W L, NING X F, YANG B J, et al. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill[J]. Applied Catalysis B: Environmental, 2018, 221:243-257. [45]WU X Q, ZHAO J, WANG L P, et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light[J]. Applied Catalysis B: Environmental, 2017, 206:501-509. [46]NING X F, ZHEN W L, WU Y Q, et al. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 226:373-383. [47]NING X F, LI J, YANG B J, et al. Inhibition of photocorrosion of CdS via assembling with thin film TiO2 and removing formed oxygen by artificial gill for visible light overall water splitting[J]. Applied Catalysis B: Environmental, 2017, 212:129-139. [48]DONG Y J, HAN Q, HU Q Y, et al. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021, 293:120214. |
[1] | ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30-43. |
|