Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 30-43.doi: 10.16088/j.issn.1001-6600.2020112302
Previous Articles Next Articles
ZHAO Dongjiang*, MA Songyan, TIAN Xiqiang
CLC Number:
[1] WANG X X, SOKOLOWSKI J, LIU H, et al. Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41(5): 739-755. DOI: 10.1016/S1872-2067(19)63407-8. [2] HYUN K, LEE J H, YOON C W, et al. The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells[J]. International Journal of Electrochemical Science, 2013, 8(10): 11752-11767. [3] WU J B, YANG H. Platinum-based oxygen reduction electrocatalysts[J]. Accounts of Chemical Research, 2013, 46(8): 1848-1857. DOI:10.1021/ar300359w. [4] HIGGINS D C, WU J, LI W M, et al. Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst[J]. Electrochim Acta, 2012, 59: 8-13. DOI:10.1016/j.electacta.2011.09.065. [5] JAOUEN F, PROIETTI E, LEFEVRE M, et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy and Environmental Science, 2011, 4(1): 114-130. DOI:10.1039/c0ee00011f. [6] SUI S, WANG X Y, ZHOU X T, et al. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. Journal of Materials Chemistry, 2017, 5(5): 1808-1825. DOI:10.1039/c6ta08580f. [7] 赵拓, 罗二桂, 王显, 等. 铂基氧还原催化剂在活性和稳定性方面的挑战[J]. 电化学, 2020, 26(1): 84-95. DOI:10.13208/j.electrochem.181205. [8] 米春霞, 彭鹏, 向中华. 非碳化策略制备氧还原电催化剂[J]. 科学通报, 2020, 65(14): 1348-1357. DOI:10.1360/TB-2019-0890. [9] ALONSO-VANTE N, TRIBUTSCH H. Energy conversion catalysis using semiconducting transition metal cluster compounds[J]. Nature, 1986, 323: 431-432. [10] FENG Y J, GAGO A, TIMPERMAN L, et al. Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance[J]. Electrochimica Acta, 2011, 56(3): 1009-1022. DOI:10.1016/j.electacta.2010.09.085. [11] GAO M R, JIANG J, YU S H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR)[J]. Small, 2012, 8(1): 13-27.DOI:10.1002/smll.201101573. [12] SHAO M M, CHANG Q W, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. DOI:10.1021/acs.chemrev.5b00462. [13] DOU S, WANG X, WANG S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods, 2019, 3(1): 1800211. DOI:10.1002/smtd.201800211. [14] BEHRET H, BINDER H, SANDSTEDE G. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals[J]. Electrochimica Acta, 1975, 20(2): 111-117. DOI:10.1016/0013-4686(75)90047-X. [15] ZHU L, SUSAC D, TEO M, et al. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction[J]. Journal of Catalysis, 2008, 258: 235-242. DOI:10.1016/j.jcat.2008.06.016. [16] JIRKOVSKY J S, BJORLING A, AHLBERG E. Reduction of oxygen on dispersed nanocrystalline CoS2[J]. Journal of Physical Chemistry C, 2012, 116(46): 24436-24444. DOI:10.1021/jp307669k. [17] ZHOU Y X, YAO H B, WANG Y, et al. Hierarchical hollow Co9S8 microspheres: solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties[J]. Chemistry, 2010, 16(39): 12000-12007. DOI:10.1002/chem.200903263. [18] ZHAO D J, MA S Y, YIN G P. A facile one-step synthesis of Co9S8 electrocatalyst for oxygen reduction reaction[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3577-3582. DOI:10.1016/S1875-5372(18)30040-7. [19] NEKOOI P, AKBARI M, AMINI M K. CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(12): 6392-6398. DOI:10.1016/j.ijhydene.2010.03.134. [20] NEKOOI P, AHMADI R, AMINI M K. Preparation of CoSe nanoparticles by microwave-assisted polyol method: effect of Se/Co ratio, support type and synthesis conditions on oxygen reduction activity[J]. Journal of the Iranian Chemical Society, 2012, 9: 715-722. DOI:10.1007/s13738-012-0077-4. [21] FENG Y J, HE T, ALONSO-VANTE N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J]. Electrochimica Acta, 2009, 54(22): 5252-5256. DOI:10.1016/j.electacta.2009.03.052. [22] FENG Y J, ALONSO-VANTE N. Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium[J]. Electrochimica Acta, 2012, 72: 129-133. DOI:10.1016/j.electacta.2012.04.003. [23] ZHU L, TEO M, WONG P C, et al. Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction[J]. Applied Catalyst A: General, 2010, 386(1/2): 157-165. DOI:10.1016/j.apcata.2010.07.048. [24] YU B B, JIN J Y, WU H M, et al. Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction[J]. International Journal of Hydrogen Energy, 2017, 42(1): 236-242. DOI:10.1016/j.ijhydene.2016.10.052. [25] ZHAO Y, ZHANG C X, FAN R, et al. Selenium decorated reduced graphene oxide supported CoSe2 nanoparticles as efficient electrochemical catalyst for the oxygen reduction reaction[J]. Chem Electro Chem, 2018, 5(21): 3287-3292. DOI:10.1002/celc.201800796. [26] FENG Y J, HE T, ALONSO-VANTE N. Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium[J]. Fuel Cells, 2010, 10(1): 77-83. DOI:10.1002/fuce.200900038. [27] ZHAO D J, MA S Y. Oxygen electroreduction on CoSe2 nanoparticles prepared via hydrothermal method in acidic medium[J]. Chemical Research in Chinese Universities, 2015, 31(3): 447-451. DOI:10.1007/s40242-015-4401-2. [28] YEAGER E. Electrocatalysts for O2 reduction[J]. Electrochimica Acta, 1984, 29(11): 1527-1537. DOI:10.1016/0013-4686(84)85006-9. [29] YEAGER E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure[J]. Journal of Molecular Catalyst, 1986, 38(1/2): 5-25. DOI:10.1016/0304-5102(86)87045-6. [30] HSUEH K L, CHIN D T, SRINIVASAN S. Electrode kinetics of oxygen reduction: a theoretical and experimental analysis of the rotating ring-disc electrade method[J]. Journal of Electroanalytical Chemistry and Interfacial, 1983, 153(1/2): 79-95. DOI:10.1016/S0022-0728(83)80007-2. [31] SHI Z, ZHANG J, LIU Z S, et al. Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts[J]. Electrochimica Acta, 2006, 51(10): 1905-1916. DOI:10.1016/j.electacta.2005.07.006. [32] CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. Journal of Physical Chemistry C, 2014, 118(51): 30063-30070. DOI:10.1021/jp5113894. [33] DAI C, TIAN X K, NIE Y L, et al. Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction[J]. Chemical Engineering Journal, 2017, 321: 105-112. DOI:10.1016/j.cej.2017.03.068. [34] XIAO H Q, WANG S T, WANG C, et al. Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution[J]. Electrochimica Acta, 2016, 217: 156-162. DOI:10.1016/j.electacta.2016.09.043. [35] LEE C P, CHEN W F, BILLO T, et al. Beaded stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis[J]. Journal of Materials Chemistry A, 2016,4(12): 4553-4561. DOI:10.1039/C6TA00464D. [36] LI H M, QIAN X L, ZHU C L, et al. Template synthesis of CoSe2/Co3Se4 nanotubes: tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium[J]. Journal of Materials Chemistry A, 2017,5(9): 4513-4526. DOI:10.1039/C6TA10718D. [37] CHEN P Z, XU K, TAO S, et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Advanced Materials, 2016, 28(34): 7527-7532. DOI:10.1002/adma.201601663. [38] WANG X, ZHUANG L Z, JIA Y, et al. Plasma-triggered synergy of exfoliation, phase transformation, and surface engineering in cobalt diselenide for enhanced water oxidation[J]. Angewandte Chemie (International ed. in English), 2018, 57(50): 16421-16425. DOI:10.1002/anie.201810199. [39] ZHANG X L, HU S J, ZHENG Y R, et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy[J]. Nature Communications, 2019, 10(1): 5338. DOI:10.1038/s41467-019-12992-y. [40] FENG Y J, ALONSO-VANTE N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Physica Status Solidi B, 2008, 245(9): 1792-1806. DOI:10.1002/pssb.200879537. [41] GEWIRTH A A, THORUM M S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges[J]. Inorganic Chemistry, 2010, 49(8): 3557-3566. DOI:10.1021/ic9022486. [42] ZHANG W X, YANG Z H, LIU J W, et al. A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2[J]. Materials Reserach Bulletin, 2000, 35(14/15): 2403-2408. DOI:10.1016/S0025-5408(00)00437-2. [43] YU B, QI F, ZHENG B J, et al. One-pot synthesis of self-assembled coral-like hierarchical architecture constructed by polymorphic CoSe2 nanocrystals as superior electrocatalyst for hydrogen evolution reaction[J]. Electrochimica Acta, 2018, 277: 161-167. DOI:10.1016/j.electacta.2018.05.001. [44] FENG Y J, HE T, ALONSO-VANTE N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles[J]. Chemistry of Materials, 2008, 20(1): 26-28. DOI:10.1021/cm7024763. [45] LI H Y, GAO D, CHENG X. Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction[J]. Electrochimica Acta, 2014, 138: 232-239. DOI:10.1016/j.electacta.2014.06.065. [46] FENG Y J, HE T, ALONSO-VANTE N. Structure phase transition and oxygen reduction activity in acidic medium of carbon-supported cobalt selenide nanoparticles[J]. ECS Transactions, 2009, 25(1): 167-173. DOI:10.1149/1.3210568. [47] ZHAO D J, ZHANG S, YIN G P, et al. Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity[J]. Journal of Power Sources, 2012, 206: 103-107. DOI:10.1016/j.jpowsour.2012.01.018. [48] YU B B, WU W, JIN J, et al. Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium[J]. International Journal of Hydrogen Energy, 2016, 41(21): 8863-8870. DOI:10.1016/j.ijhydene.2016.04.074. [49] LEE K, ZHANG L, ZHANG J J. Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction[J]. Electrochemistry Communications, 2007, 9: 1704-1708. DOI:10.1016/j.elecom.2007.03.025. [50] GAO M R, XU Y F, JIANG J, et al. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite[J]. Journal of the American Chemical Society, 2012, 134(6): 2930-2933. DOI:10.1021/ja211526y. [51] OTHMAM R, DICKS A L, ZHU Z H. Non precious metal catalysts for the PEM fuel cell cathode[J]. International Journal of Hydrogen Energy, 2012, 37: 357-372. DOI:10.1016/j.ijhydene.2011.08.095. [52] GAO M R, YAO W T, YAO H B, et al. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution[J]. Journal of the American Chemical Society, 2009, 131(22): 7486-7487. DOI:10.1021/ja900506x. [53] GAO M R, LIU S, JIANG J, et al. In situ controllable synthesis of magnetitenanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance[J]. Journal of Materials Chemistry, 2010, 20(42): 9355-9361. DOI:10.1039/C0JM01547D. [54] GAO M R, GAO Q, JIANG J, et al. A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells[J]. Angew Chem Int Ed, 2011, 50(21): 4905-4908. DOI:10.1002/ange.201007036. [55] LI H Y, ZHANG Y, CHENG X. High catalytic activity of Ru@CoSe2/C toward oxygen reduction reaction[J]. ECS Transactions, 2015, 66(24):39-46. DOI:10.1149/06624.0039ecst. [56] HUANG Y L, FENG C Q, WU H M, et al. Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction[J]. Journal of Materials Science, 2018, 53: 1123-1134. DOI:10.1007/s10853-017-1603-7. [57] WU Z S, YANG S B, SUN Y, et al. 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as effificient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134: 9082-9085. DOI:10.1021/ja3030565. [58] ZHANG X F, WANG X Y, LE L J, et al. Electrochemical growth of octahedral Fe3O4 with high activity and stability toward the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(38):19273-19276. DOI:10.1039/C5TA04450B. [59] ZHAO D J, ZHANG S, YIN G P, et al. Tungsten doped Co-Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction[J]. Electrochimica Acta, 2013, 91: 179-184. DOI:10.1016/j.electacta.2013.01.001. [60] JIN J Y, YU B B, WU H M, et al. Synthesis and electrocatalytic activity of Co1-xMoxSe2 for oxygen reduction[J]. Journal of Alloys and Compounds, 2017, 703: 652-655. DOI:10.1016/j.jallcom.2017.01.279. [61] SARMA S C, MISHRA V, VEMURI V, et al. Breaking the O=O bond: deciphering the role of each element in highly durable CoPd2Se2 toward oxygen reduction reaction[J]. ACS Applied Energy Materials, 2020, 3: 231-239. DOI:10.1021/acsaem.9b01400. [62] AUER E, FREUND A, PIETSCH J, et al. Carbons as supports for industrial precious metal catalysts[J]. Applied Catalysis A: Genernal, 1998, 173(2): 259-271. DOI:10.1016/S0926-860X(98)00184-7. [63] KIM S, PARK S J. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters[J]. Electrochimica Acta, 2007, 52(9): 3013-3021. DOI:10.1016/j.electacta.2006.09.060. [64] 郑巧玲, 刘朝杨, 程璇, 等. 碳载体对钴硒催化剂氧还原活性的影响[J]. 厦门大学学报(自然科学版), 2015, 54(5): 730-737. DOI:10.6043/j.issn.0438-0479.2015.05.018. [65] CHAO Y S, TSAI D S, WU A P, et al. Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction[J]. International Journal of Hydrogen Energy 2013; 38(14): 5655-5664. DOI:10.1016/j.ijhydene.2013.03.006. [66] UNNI S M, MORA-HERNANDEZ J M, KURUNGOT S, et al. CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells[J]. Chem Electro Chem, 2015, 2(9): 1339-1345. DOI:10.1002/celc.201500154. [67] UNNI S M, MORA-HERNANDEZ J M, LUO Y, et al. Substrate effects on the catalytic center of CoSe2 for oxygen reduction reaction[J]. ECS Transactions, 2015, 64(36): 1-9. DOI:10.1149/06436.0001ecst. [68] WU R B, XUE Y H, LIU B, et al. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2016, 330: 132-139. DOI:10.1016/j.jpowsour.2016.09.001. [69] 赵东江, 马松艳, 白晓波. 掺杂石墨烯用作阴极氧还原催化剂的研究进展[J]. 炭素技术, 2015, 34(1): 1-5. DOI:10.14078/j.cnki.1001-3741.2015.01.001. [70] 马松艳, 田喜强, 迟彩霞, 等. CoSe2/rGO复合物的水热法合成及其氧还原催化性能[J]. 炭素技术, 2019, 38(1): 14-17,40. DOI:10.14078/j.cnki.1001-3741.2019.01.004. [71] VERJULIO R W, SANTANDER J, MA J, et al. Selective CoSe2/C cathode catalyst for passive air-breathing alkaline anion exchange membrane μ-direct methanol fuel cell (AEM-μDMFC)[J]. International Journal of Hydrogen Energy, 2016, 41(43): 19595-19600. DOI:10.1016/j.ijhydene.2016.01.132. |
No related articles found! |
|