Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 86-97.doi: 10.16088/j.issn.1001-6600.2022031501

Previous Articles     Next Articles

Influence of Control Timing and Strength on the Spreading of Epidemic

ZHAO Ming*, LUO Qiulian, CHEN Weimeng, CHEN Jiani   

  1. College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-03-15 Revised:2022-07-29 Online:2023-03-25 Published:2023-04-25

Abstract: Isolation is one of the most important means to control the epidemic spreading, and the control timing and strength have great significance in the control effects. To find the most appropriate control timing and strength, in this paper, and based on uncorrelated random scale-free network and SIR spreading model, the effects of control timing and strength on the range of infectious disease spreading and individual activity are studied. The results show that if the control mode is to control the infectious state only, in both of the scale-free network model and in the real scale-free networks, when the control strength keeps the same, the earlier the control time is, the better the control effect is, and when the control time is the same, the greater the control effort is, the better the control effect is. Whether in the network model or in the real networks, the change of individual activity is non-monotonous: when the control strength is unchanged, the individual activity decreases first and then increases with the increase of control time, indicating that the number of total individuals whose activities are controlled earlier or later at the end of the epidemic transmission is less, and more infected individuals will need to be controlled when control is started around the peak of infectious disease transmission; When the control time is unchanged but before the peak value, the individual activity also decreases first and then increases, while after the peak value, the individual activity decreases monotonously.To sum up, the earlier the control time is, the greater the control force is, the better the control effect will be, and the less the individual will be affected. That is, if the strongest control strength 1 is used at the first step after the epidemic is observed, the best control effect will be achieved. The transmission range will be reduced from 55.9% to 0.1%, and only 0.2% of the total population will be controlled.

Key words: complex networks, control timing, control strength, spreading scope, individual activity

CLC Number: 

  • O175
[1] DONTHU N, GUSTAFSSON A. Effects of COVID-19 on business and research[J]. Journal of Business Research, 2020,117: 284-289. DOI: 10.1016/j.jbusres.2020.06.008.
[2] FAIRLIE R. The impact of COVID-19 on small business owners: evidence from the first three months after widespread social-distancing restrictions[J].Journal of Economics & Management Strategy, 2020,29(4): 727-740. DOI: 10.1111/jems.12400.
[3] HOOFMAN J, SECORD E. The effect of COVID-19 on education[J]. Pediatric Clinics of North America, 2021,68(5): 1071-1079. DOI: 10.1016/j.pcl.2021.05.009.
[4] KHAN I, SHAH D. SHAH S S. COVID-19 pandemic and its positive impacts on environment: an updated review[J]. International Journal of Environmental Science and Technology, 2021,18(2): 521-530.DOI: 10.1007/s13762-020-03021-3.
[5] 沈国兵.“新冠肺炎”疫情对我国外贸和就业的冲击及纾困举措[J].上海对外经贸大学学报,2020,27(2): 16-25.DOI: 10.16060/j.cnki.issn2095-8072.2020.02.002.
[6] 夏杰长,丰晓旭.新冠肺炎疫情对旅游业的冲击与对策[J].中国流通经济,2020,34(3): 3-10.DOI: 10.14089/j.cnki.cn11-3664/f.2020.03.001.
[7] 何诚颖,闻岳春,常雅丽,等.新冠病毒肺炎疫情对中国经济影响的测度分析[J].数量经济技术经济研究,2020,37(5): 3-22.DOI: 10.13653/j.cnki.jqte.2020.05.001.
[8] 沈国强,任慧妍,周龙,等.新型冠状病毒肺炎疫情的应对政策及评估体系研究[J].科技导报,2021,39(5): 87-98. DOI: 10.3981/j.issn.1000-7857.2021.05.010.
[9] 戴碧涛,谭索怡,陈洒然,等.基于手机大数据的中国人口迁徙模式及疫情影响研究[J].物理学报,2021,70(6):068903.
[10] WHO. WHO coronavirus (COVID-19) dashboard[EB/OL]. (2022-03-02)[2022-03-15]. https://covid19.who.int/.
[11] O'DONNELL J, ALLTUCKER K. Medical bias: from pain pills to COVID-19, racial discrimination in health care festers[EB/OL]. [2021-03-02]. https://www.usatoday.com/story/news/health/2020/06/14/festering-racial-bias-health-care-factor-covid-19-disparities/5320187002/.
[12] YANG Z F, ZENG Z Q, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174.
[13] 薄立军,张婷婷,徐明雯婵.基于平均场博弈的新冠肺炎最优防控力度切换策略[J].应用概率统计,2021,37(3):274-290.
[14] 闫金红.全球抗疫背景下人类命运共同体的理论溯源及现实思考[J].哈尔滨工业大学学报(社会科学版),2022,24(1):9-15.
[15] GARDNER B J, KILPATRICK A M. Contact tracing efficiency, transmission heterogeneity, and accelerating COVID-19 epidemics[J]. PLoS Computational Biology, 2021, 17(6): e1009122.
[16] JIANG C. Optimal control of SARS epidemics based on cybernetics[J]. International Journal of Systems Science, 2007, 38(6): 451-457.
[17] BOLZONI L, BONACINI E, SORESINA C, et al. Time-optimal control strategies in SIR epidemic models[J]. Mathematical Biosciences, 2017, 292: 86-96.
[18] BOLZONI L, DELLA MARCA R, GROPPI M. On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies[J]. Journal of Mathematical Biology, 2021, 83(4): 36.
[19] NENCHEV V. Optimal quarantine control of an infectious outbreak[J]. Chaos Solitons & Fractals, 2020, 138: 110139.
[20] CHEN X R, FU F. Highly coordinated nationwide massive travel restrictions are central to effective mitigation and control of COVID-19 outbreaks in China[J]. Proceedings. Mathematical, Physical, and Engineering Sciences / the Royal Society, 2022, 478(2260): 20220040.
[21] CATANZARO M, BOGUÑÁ M, PASTOR-SATORRAS R. Generation of uncorrelated random scale-free networks[J]. Physical Review E, 2005, 71(2 Pt 2): 027103.
[22] MANN P, SMITH V A, MITCHELL J B O, et al. Exact formula for bond percolation on cliques[J]. Physical Review E, 2021, 104(2): 024304.
[23] CLAUSETA, SHALIZI C R, NEWMANM E J. Power-law distributions in empirical data[J]. SIAM Review, 2009, 51(4): 661-703.
[24] YILDIRIM Y, BISWAS A, KARA A H, et al. Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity[J]. Optik, 2021, 240: 166966.
[25] ÓDOR G. Nonuniversal power-law dynamics of susceptible infected recovered models on hierarchical modular networks[J]. Physical Review E, 2021, 103(6): 062112.
[26] DOROGOVTSEV S N, MENDES J F F. Comment on “breakdown of the internet under intentional attack”[J]. Physical Review Letters, 2001, 87(21): 219801.
[27] CURTIS C W, PORTER M A. Detection of functional communities in networks of randomly coupled oscillators using the dynamic-mode decomposition[J]. Physical Review E, 2021, 104(4): 044305.
[28] KERMACK W O, MCKENDRICK A G.Contributions to the mathematical theory of epidemics:II. The problem of endemicity[J]. Bulletin of Mathematical Biology, 1991, 53(1/2): 57-87.
[29] ALLEN L J. Some discrete-time SI, SIR, and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124(1): 83-105.
[30] 宋俐.江苏省2006~2008年突发公共卫生事件流行特征分析[J].现代预防医学,2010,37(11):2007-2009,2011.
[31] 范如国,王奕博,罗明,等.基于SEIR的新冠肺炎传播模型及拐点预测分析[J].电子科技大学学报,2020,49(3):369-374.
[32] TANG M, LIU L, LIU Z H. Influence of dynamical condensation on epidemic spreading in scale-free networks[J]. Physical Review E, 2009, 79(1): 016108.
[33] SCHWARTZ I B, SMITH H L. Infinite subharmonic bifurcation in an SEIR epidemic model[J]. Journal of Mathematical Biology, 1983, 18(3): 233-253.
[34] 秦海虹.深村的生活世界:一个麻风村落的过去、现在与未来[D].济南:山东大学,2020.
[35] LI Z, REN T, MA X Q, et al. Identifying influential spreaders by gravity model[J]. Scientific Reports, 2019, 9(1): 8387.
[36] XUE X F. The critical infection rate of the high-dimensional two-stage contact process[J]. Statistics & Probability Letters, 2018, 140: 115-125.
[37] LI B, SAAD D. Impact ofpresymptomatic transmission on epidemic spreading in contact networks: a dynamic message-passing analysis[J]. Physical Review E, 2021, 103(5): 052303.
[38] CHANG X, CAI C R, ZHANG J Q, et al. Analytical solution of epidemic threshold for coupled information-epidemic dynamics on multiplex networks with alterable heterogeneity[J]. Physical Review E, 2021, 104(4): 044303.
[39] 汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012:309-313.
[40] ZHENG M H, WANG W, TANG M, et al. Multiple peaks patterns of epidemic spreading in multi-layer networks[J]. Chaos,Solitons & Fractals, 2018, 107: 135-142.
[1] LI Juexuan,ZHAO Ming. Influence of Average Degree and Scale of Network on Partial Synchronization of Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 115-124.
[2] ZHANG Bing. Small World Phenomenon of Knowledge Flowing in Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[7] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[8] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[9] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[10] YANG Xiufeng, FAN Jianghua. Connectedness of the Strong Efficient Solution Set for Vector Equilibrium Problems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 98 -105 .