Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 108-120.doi: 10.16088/j.issn.1001-6600.2023082502

Previous Articles     Next Articles

Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion

YI Jianbing*, PENG Xin, CAO Feng, LI Jun, XIE Weijia   

  1. College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2023-08-25 Revised:2023-12-17 Published:2024-05-31

Abstract: The features extracted by the existing point cloud registration algorithms are not so rich, which makes it difficult to further improve the accuracy of the registration. To address this problem, a deep learning-based multi-scale feature fusion point cloud registration algorithm is proposed. EdgeConv is employed to extract multiple features of different scales through the algorithm at first, which can maintain the local geometric structure characteristics. Then Non-linear Polarized Self-attention is introduced to filter its output features, and thus the effectiveness of feature information is improved. And later the above multi-scale features are fused and EdgeConv is employed again to extract their features, thereby improving the expression ability of the features. In the rigid pose estimation stage, Lie algebra is used to process the rotational transformation to fully exploit the transformation information of the point cloud. According to the changes of the extracted point cloud features during the registration process, the weight values of the components of the loss function are dynamically adjusted to evaluate the prediction results of the model more accurately. Tested on the ModelNet40 dataset, when the sample types of the train and test sets are the same, the rotation error of the proposed algorithm is 1.826 7 and the displacement error is 0.001 0, and when the sample types of the train and test sets are not the same (experiments on generalization), the rotation error of the proposed algorithm is 2.979 4 and the displacement error is 0.001 0. The experimental results show that the registration accuracy of the proposed algorithm has improved compared with the current mainstream algorithms, and it exhibits good generalization performance.

Key words: deep learning, point cloud registration, feature extraction, rigid object, pose estimation, Lie algebra

CLC Number:  TP391.41
[1] 栾佳宁, 张伟, 孙伟, 等. 基于二维码视觉与激光雷达融合的高精度定位算法[J]. 计算机应用, 2021, 41(5): 1484-1491. DOI: 10.11772/j.issn.1001-9081.2020081162.
[2] 王任栋, 徐友春, 齐尧, 等. 一种鲁棒的城市复杂动态场景点云配准方法[J]. 机器人, 2018, 40(3): 257-265. DOI: 10.13973/j.cnki.robot.170429.
[3] 李美佳, 于泽宽, 刘晓, 等. 点云算法在医学领域的研究进展[J]. 中国图象图形学报, 2020, 25(10): 2013-2023. DOI: 10.11834/jig.200253.
[4] HUANG X S, MEI G F, ZHANG J, et al. A comprehensive survey on point cloud registration[EB/OL]. (2021-03-05)[2023-08-25]. https://arxiv.org/abs/2103.02690. DOI: 10.48550/arXiv.2103.02690.
[5] 阎翔鑫, 蒋峥, 刘斌. 基于角度约束的跨源点云配准算法[J]. 激光与光电子学进展, 2023, 60(22): 2215004. DOI: 10.3788/LOP230478.
[6] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. DOI: 10.1109/34.121791.
[7] LIU H K, ZHANG Y, LEI L J, et al. Hierarchical optimization of 3D point cloud registration[J]. Sensors, 2020, 20(23): 6999. DOI: 10.3390/s20236999.
[8] 朱玉梅, 邢明义, 蔡静. 基于法向量权重改进的ICP算法[J]. 计量学报, 2023, 44(6): 852-857. DOI: 10.3969/j.issn.1000-1158.2023.06.03.
[9] 李茂月, 田帅, 刘硕, 等. 基于结构光在机测量的变形薄壁件点云配准方法[J]. 光电子·激光, 2022, 33(11): 1148-1157. DOI: 10.16136/j.joel.2022.11.0052.
[10] YEW Z J, LEE G H. RPM-Net: robust point matching using learned features[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11821-11830. DOI: 10.1109/CVPR42600.2020.01184.
[11] 张文丽, 程兰, 任密蜂, 等. 基于AGConv局部特征描述符的点云配准[J]. 计算机工程, 2023, 49(11): 231-237. DOI: 10.19678/j.issn.1000-3428.0066359.
[12] WANG Y, SOLOMON J M. Deep closest point: learning representations for point cloud registration[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 3522-3531. DOI: 10.1109/ICCV.2019.00362.
[13] 李健, 黄硕文, 冯凯, 等. 核相关神经网络点云自动配准算法[J]. 同济大学学报(自然科学版), 2022, 50(11): 1685-1692. DOI: 10.11908/j.issn.0253-374x.21319.
[14] 刘磊, 熊风光, 尹宇慧, 等. 多特征提取与匹配矩阵驱动的点云配准[J]. 计算机工程与设计, 2023, 44(5): 1419-1426. DOI: 10.16208/j.issn.1000-7024.2023.05.019.
[15] QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 77-85. DOI: 10.1109/CVPR.2017.16.
[16] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 5100-5109.
[17] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: robust & efficient point cloud registration using PointNet[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 7156-7165. DOI: 10.1109/CVPR.2019.00733.
[18] LI X Q, PONTES J K, LUCEY S. PointNetLK revisited[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 12758-12767. DOI: 10.1109/CVPR46437.2021.01257.
[19] HUANG X S, MEI G F, ZHANG J. Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11363-11371. DOI: 10.1109/CVPR42600.2020.01138.
[20] SARODE V, LI X Q, GOFORTH H, et al. PCRNet: point cloud registration network using PointNet encoding[EB/OL]. (2019-11-04)[2023-08-25]. https://arxiv.org/abs/1908.07906. DOI: 10.48550/arXiv.1908.07906.
[21] 武越, 苑咏哲, 岳铭煜, 等. 点云配准中多维度信息融合的特征挖掘方法[J]. 计算机研究与发展, 2022, 59(8): 1732-1741. DOI: 10.7544/issn1000-1239.20220042.
[22] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. DOI: 10.1145/3326362.
[23] LIU H J, LIU F Q, FAN X Y, et al. Polarized self-attention: towards high-quality pixel-wise regression[EB/OL]. (2021-07-08)[2023-08-25]. https://arxiv.org/abs/2107.00782. DOI: 10.48550/arXiv.2107.00782.
[24] SHEN W, ZHANG B B, HUANG S K, et al. 3D-rotation-equivariant quaternion neural networks[C]// Computer Vision-ECCV 2020: LNCS Volume 12365. Cham: Springer, 2020: 531-547. DOI: 10.1007/978-3-030-58565-5_32.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[26] YANG J L, LI H D, CAMPBELL D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254. DOI: 10.1109/TPAMI.2015.2513405.
[27] 秦庭威, 赵鹏程, 秦品乐, 等. 基于残差注意力机制的点云配准算法[J]. 计算机应用, 2022, 42(7): 2184-2191. DOI: 10.11772/j.issn.1001-9081.2021071319.
[28] 梁正友, 姚强, 孙宇, 等.基于多尺度特征融合和残差混合注意力的点云配准算法[J]. 计算机工程与设计, 2023, 44(9): 2650-2656. DOI: 10.16208/j.issn1000-7024.2023.09.012.
[29] KUROBE A, SEKIKAWA Y, ISHIKAWA K, et al. CorsNet: 3D point cloud registration by deep neural network[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 3960-3966. DOI: 10.1109/LRA.2020.2970946.
[30] YI R B, LI J L, LUO L, et al. DOPNet: achieving accurate and efficient point cloud registration based on deep learning and multi-level features[J]. Sensors, 2022, 22(21): 8217. DOI: 10.3390/s22218217.
[31] SONG Y N, SHEN W M, PENG K K. A novel partial point cloud registration method based on graph attention network[J]. The Visual Computer, 2023, 39(3): 1109-1120. DOI: 10.1007/s00371-021-02391-0.
[32] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]// 2009 IEEE International Conference on Robotics and Automation. Los Alamitos, CA: IEEE Computer Society, 2009: 3212-3217. DOI: 10.1109/ROBOT.2009.5152473.
[33] ZHANG J Y, YAO Y X, DENG B L. Fast and robust iterative closest point[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3450-3466. DOI: 10.1109/TPAMI.2021.3054619.
[34] LV C L, LIN W S, ZHAO B Q. KSS-ICP: point cloud registration based on kendall shape space[J]. IEEE Transactions on Image Processing, 2023, 32: 1681-1693. DOI: 10.1109/TIP.2023.3251021.
[1] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[2] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[3] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[4] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62-69.
[5] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[6] LIANG Zhenfeng, XIA Haiying. A Fast Stitching Algorithm for UAV Aerial Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 41-52.
[7] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[8] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[9] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72-89.
[10] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[11] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[12] HU Qiang, LIU Qian, ZHOU Hangxia. Study on Phishing Website Detection Based on Improved Stacking Strategy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 132-140.
[13] DUAN Meiling, PAN Julong. Wearable Fall Detection Based on Bi-directional LSTM Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 141-150.
[14] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[15] YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!