Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 33-50.doi: 10.16088/j.issn.1001-6600.2023032203
Previous Articles Next Articles
GAO Fei1, GUO Xiaobin1, YUAN Dongfang2, CAO Fujun2*
[1] AZIZ K, SETTARI A. Petroleum reservoir simulation[M]. London: Applied Science Publishers, 1979. [2] ACKERMANN I J, HASS H, MEMMESHEIMER M, et al. Modal aerosol dynamics model for Europe: development and first applications[J]. Atmospheric Environment, 1998, 32(17): 2981-2999. DOI: 10.1016/S1352-2310(98)00006-5. [3] MORTON K W. Numerical solution of convection-diffusion problems[M]. London: Chapman & Hall, 1996. [4] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. 2nd ed. Hoboken: Wiley, 2006. [5] BEAR J. Hydraulics of groundwater[M]. New York: Courier Corporation, 2012. [6] CLAVERO C, JORGE J C, LISBONA F. A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems[J]. Journal of Computational and Applied Mathematics, 2003, 154(2): 415-429. DOI: 10.1016/S0377-0427(02)00861-0. [7] GE Y B, CAO F J. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems[J]. Journal of Computational Physics, 2011, 230(10): 4051-4070. DOI: 10.1016/j.jcp.2011.02.027. [8] KUMAR V, SRINIVASAN B. An adaptive mesh strategy for singularly perturbed convection diffusion problems[J]. Applied Mathematical Modelling, 2015, 39(7): 2081-2091. DOI: 10.1016/j.apm.2014.10.019. [9] DU J, CHUNG E. An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation[J]. Journal of Scientific Computing, 2018, 77(3): 1490-1518. DOI: 10.1007/s10915-018-0695-9. [10] DOUGLAS J J, RUSSELL T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5): 871-885. DOI: 10.1137/0719063. [11] ZHANG Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215(2): 524-529. DOI: 10.1016/j.amc.2009.05.018. [12] TAYLOR C A, HUGHES T J R, ZARINS C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 158(1/2): 155-196. DOI: 10.1016/S0045-7825(98)80008-X. [13] QIN X Q, MA Y C, ZHANG Y. Two-grid method for characteristics finite-element solution of 2D nonlinear convection-dominated diffusion problem[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1506-1514. DOI: 10.1007/BF03246258. [14] EYMARD R, GALLOUËT T, HERBIN R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018. DOI: 10.1016/S1570-8659(00)07005-8. [15] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045. [16] BLECHSCHMIDT J, ERNST O G. Three ways to solve partial differential equations with neural networks: a review[J]. GAMM-Mitteilungen, 2021, 44(2): e202100006. DOI: 10.1002/gamm.202100006. [17] PANG G F, LU L, KARNIADAKIS G E.fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. DOI: 10.1137/18M1229845. [18] JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks(XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. DOI: 10.4208/cicp.OA-2020-0164. [19] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. DOI: 10.1016/j.cma.2022.114823. [20] YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. DOI: 10.1016/j.jcp.2020.109913. [21] JIN X W, CAI S Z, LI H, et al.NSFnets(Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. DOI: 10.1016/j.jcp.2020.109951. [22] JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2239): 20200334. DOI: 10.1098/rspa.2020.0334. [23] MENG X H, LI Z, ZHANG D K, et al. PPINN:parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. DOI: 10.1016/j.cma.2020.113250. [24] CHEN Y T, CHANG H B, MENG J, et al. Ensemble neural networks(ENN): a gradient-free stochastic method[J]. Neural Networks, 2019, 110: 170-185. DOI: 10.1016/j.neunet.2018.11.009. [25] KHARAZMI E, ZHANG Z Q, KARNIADAKIS G E M. hp-VPINNs: variational physics-informed neural networks with domain decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113547. DOI: 10.1016/j.cma.2020.113547. [26] GU Y Q, YANG H Z, ZHOU C.SelectNet: self-paced learning for high-dimensional partial differential equations[J]. Journal of Computational Physics, 2021, 441: 110444. DOI: 10.1016/j.jcp.2021.110444. [27] DWIVEDI V, SRINIVASAN B. Physics informed extreme learning machine(PIELM)-A rapid method for the numerical solution of partial differential equations[J]. Neurocomputing, 2020, 391: 96-118. DOI: 10.1016/j.neucom.2019.12.099. [28] SHENG H L, YANG C. PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries[J]. Journal of Computational Physics, 2021, 428: 110085. DOI: 10.1016/j.jcp.2020.110085. [29] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. DOI: 10.1126/science.aaw4741. [30] MAO Z P, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. DOI: 10.1016/j.cma.2019.112789. [31] CAI S Z, WANG Z C, WANG S F, et al. Physics-informed neural networks for heat transfer problems[J]. Journal of Heat Transfer, 2021, 143(6): 060801. DOI: 10.1115/1.4050542. [32] JAGTAP A D, KAWAGUCHI K, KARNIADAKIS G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks[J]. Journal of Computational Physics, 2020, 404: 109136. DOI: 10.1016/j.jcp.2019.109136. [33] VAN DER MEER R, OOSTERLEE C W, BOROVYKH A. Optimally weighted loss functions for solving PDEs with neural networks[J]. Journal of Computational and Applied Mathematics, 2022, 405: 113887. DOI: 10.1016/j.cam.2021.113887. |
[1] | JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83. |
[2] | YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18. |
[3] | WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85. |
[4] | ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87. |
[5] | LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103. |
[6] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[7] | YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184. |
[8] | LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98. |
[9] | WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133. |
[10] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
[11] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[12] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[13] | XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50. |
[14] | TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39. |
[15] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
|