Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 33-50.doi: 10.16088/j.issn.1001-6600.2023032203

Previous Articles     Next Articles

Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer

GAO Fei1, GUO Xiaobin1, YUAN Dongfang2, CAO Fujun2*   

  1. 1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou Neimenggu 014010, China;
    2. School of Science, Inner Mongolia University of Science and Technology, Baotou Neimenggu 014010, China
  • Received:2023-03-22 Revised:2023-04-24 Published:2023-12-04

Abstract: To address the issue of insufficient accuracy when solving convection-dominated diffusion equations with drastic gradient changes near the boundary layer using Physics-Informed Neural Networks (PINNs), a neural network solution method incorporating a parameter progressive strategy is proposed. This method initially approximates the smooth solution of the large diffusion parameter equation, then progressively reduces the diffusion parameter while using the optimal network parameters from the large diffusion parameter as the initial values for training the small diffusion parameter neural network. By iteratively optimizing the Physics-Informed Neural Networks through parameter cycling, the neural network’s representational capacity is enhanced, thereby improving the approximation accuracy of the convection-dominated diffusion problem. And finally a high-precision singular solution for the small diffusion parameter is obtained. A comparison of the accuracy and convergence efficiency of present method with those of PINNs and gPINNs shows that this method can efficiently approximate the large gradient solution of the convective dominant diffusion equation with an accuracy of the order of 10-3 under the condition of unknown boundary layer position. Meanwhile, the present method has more advantages and better performance than PINNs and gPINNs in terms of convergence speed and stability.

Key words: diffusion equation, boundary layer, physical information neural networks, deep learning, convective diffusion

CLC Number:  O241.82
[1] AZIZ K, SETTARI A. Petroleum reservoir simulation[M]. London: Applied Science Publishers, 1979.
[2] ACKERMANN I J, HASS H, MEMMESHEIMER M, et al. Modal aerosol dynamics model for Europe: development and first applications[J]. Atmospheric Environment, 1998, 32(17): 2981-2999. DOI: 10.1016/S1352-2310(98)00006-5.
[3] MORTON K W. Numerical solution of convection-diffusion problems[M]. London: Chapman & Hall, 1996.
[4] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. 2nd ed. Hoboken: Wiley, 2006.
[5] BEAR J. Hydraulics of groundwater[M]. New York: Courier Corporation, 2012.
[6] CLAVERO C, JORGE J C, LISBONA F. A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems[J]. Journal of Computational and Applied Mathematics, 2003, 154(2): 415-429. DOI: 10.1016/S0377-0427(02)00861-0.
[7] GE Y B, CAO F J. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems[J]. Journal of Computational Physics, 2011, 230(10): 4051-4070. DOI: 10.1016/j.jcp.2011.02.027.
[8] KUMAR V, SRINIVASAN B. An adaptive mesh strategy for singularly perturbed convection diffusion problems[J]. Applied Mathematical Modelling, 2015, 39(7): 2081-2091. DOI: 10.1016/j.apm.2014.10.019.
[9] DU J, CHUNG E. An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation[J]. Journal of Scientific Computing, 2018, 77(3): 1490-1518. DOI: 10.1007/s10915-018-0695-9.
[10] DOUGLAS J J, RUSSELL T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5): 871-885. DOI: 10.1137/0719063.
[11] ZHANG Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215(2): 524-529. DOI: 10.1016/j.amc.2009.05.018.
[12] TAYLOR C A, HUGHES T J R, ZARINS C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 158(1/2): 155-196. DOI: 10.1016/S0045-7825(98)80008-X.
[13] QIN X Q, MA Y C, ZHANG Y. Two-grid method for characteristics finite-element solution of 2D nonlinear convection-dominated diffusion problem[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1506-1514. DOI: 10.1007/BF03246258.
[14] EYMARD R, GALLOUËT T, HERBIN R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018. DOI: 10.1016/S1570-8659(00)07005-8.
[15] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045.
[16] BLECHSCHMIDT J, ERNST O G. Three ways to solve partial differential equations with neural networks: a review[J]. GAMM-Mitteilungen, 2021, 44(2): e202100006. DOI: 10.1002/gamm.202100006.
[17] PANG G F, LU L, KARNIADAKIS G E.fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. DOI: 10.1137/18M1229845.
[18] JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks(XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. DOI: 10.4208/cicp.OA-2020-0164.
[19] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. DOI: 10.1016/j.cma.2022.114823.
[20] YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. DOI: 10.1016/j.jcp.2020.109913.
[21] JIN X W, CAI S Z, LI H, et al.NSFnets(Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. DOI: 10.1016/j.jcp.2020.109951.
[22] JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2239): 20200334. DOI: 10.1098/rspa.2020.0334.
[23] MENG X H, LI Z, ZHANG D K, et al. PPINN:parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. DOI: 10.1016/j.cma.2020.113250.
[24] CHEN Y T, CHANG H B, MENG J, et al. Ensemble neural networks(ENN): a gradient-free stochastic method[J]. Neural Networks, 2019, 110: 170-185. DOI: 10.1016/j.neunet.2018.11.009.
[25] KHARAZMI E, ZHANG Z Q, KARNIADAKIS G E M. hp-VPINNs: variational physics-informed neural networks with domain decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113547. DOI: 10.1016/j.cma.2020.113547.
[26] GU Y Q, YANG H Z, ZHOU C.SelectNet: self-paced learning for high-dimensional partial differential equations[J]. Journal of Computational Physics, 2021, 441: 110444. DOI: 10.1016/j.jcp.2021.110444.
[27] DWIVEDI V, SRINIVASAN B. Physics informed extreme learning machine(PIELM)-A rapid method for the numerical solution of partial differential equations[J]. Neurocomputing, 2020, 391: 96-118. DOI: 10.1016/j.neucom.2019.12.099.
[28] SHENG H L, YANG C. PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries[J]. Journal of Computational Physics, 2021, 428: 110085. DOI: 10.1016/j.jcp.2020.110085.
[29] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. DOI: 10.1126/science.aaw4741.
[30] MAO Z P, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. DOI: 10.1016/j.cma.2019.112789.
[31] CAI S Z, WANG Z C, WANG S F, et al. Physics-informed neural networks for heat transfer problems[J]. Journal of Heat Transfer, 2021, 143(6): 060801. DOI: 10.1115/1.4050542.
[32] JAGTAP A D, KAWAGUCHI K, KARNIADAKIS G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks[J]. Journal of Computational Physics, 2020, 404: 109136. DOI: 10.1016/j.jcp.2019.109136.
[33] VAN DER MEER R, OOSTERLEE C W, BOROVYKH A. Optimally weighted loss functions for solving PDEs with neural networks[J]. Journal of Computational and Applied Mathematics, 2022, 405: 113887. DOI: 10.1016/j.cam.2021.113887.
[1] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[3] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[4] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[5] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[6] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[7] YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184.
[8] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[9] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[10] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[11] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[12] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[13] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
[14] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
[15] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] MA Qianran, WEI Duqu. Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 1 -7 .
[3] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8 -21 .
[4] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[5] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[6] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[7] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[8] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80 -91 .
[9] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .
[10] GUO Jie, SUO Hongmin, ZHU Yiying, GUO Jiachao. Existence of Solutions for a Class of Kirchhoff Type Problems with Critical Exponent and Indefinite Potential[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 105 -112 .