Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 70-79.doi: 10.16088/j.issn.1001-6600.2023021101
Previous Articles Next Articles
WEN Xueyan*, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin
[1] 徐霄玲, 郑建立, 尹梓名. 机器阅读理解的技术研究综述[J]. 小型微型计算机系统, 2020, 41(3): 464-470. DOI: 10.3969/j.issn.1000-1220.2020.03.003. [2] LIU S S, ZHANG X, ZHANG S, et al. Neural machine reading comprehension: methods and trends[J]. Applied Sciences, 2019, 9(18): 3698. DOI: 10.3390/app9183698. [3] 马晨辉, 施水才, 肖诗斌. 多项选择式机器阅读理解综述[J]. 北京信息科技大学学报(自然科学版), 2021, 36(5): 91-96. DOI: 10.16508/j.cnki.11-5866/n.2021.05.015. [4] 包玥, 李艳玲, 林民. 抽取式机器阅读理解研究综述[J]. 计算机工程与应用, 2021, 57(12): 25-36. DOI: 10.3778/j.issn.1002-8331.2102-0038. [5] 杨康, 黄定江, 高明. 面向自动问答的机器阅读理解综述[J]. 华东师范大学学报(自然科学版), 2019(5): 36-52. DOI: 10.3969/j.issn.1000-5641.2019.05.003. [6] 吕文蓉, 郭泽晨, 马宁. 机器阅读理解技术及应用研究[J]. 西北民族大学学报(自然科学版), 2022, 43(1): 17-25. DOI: 10.14084/j.cnki.cn62-1188/n.2022.01.008. [7] 王小捷, 白子薇, 李可, 等. 机器阅读理解的研究进展[J]. 北京邮电大学学报, 2019, 42(6): 1-9. DOI: 10.13190/ j.jbupt.2019-111. [8] MUELLER J, THYAGARAJAN A. Siamese recurrent architectures for learning sentence similarity[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2786-2792. DOI: 10.1609/aaai.v30i1.10350. [9] CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2023-02-11]. http://arxiv.org/abs/1412.3555. DOI: 10.48550/arXiv.1412.3555. [10] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [11] 周圣凯, 富丽贞, 宋文爱. 基于深度学习的短文本语义相似度计算模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 49-56. DOI: 10.16088/j.issn.1001-6600.2021071001. [12] 张超然, 裘杭萍, 孙毅, 等. 基于预训练模型的机器阅读理解研究综述[J]. 计算机工程与应用, 2020, 56(11): 17-25. DOI: 10.3778/j.issn.1002-8331.2001-0285. [13] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 1877-1901. [14] 杜永萍, 赵以梁, 阎婧雅, 等. 基于深度学习的机器阅读理解研究综述[J]. 智能系统学报, 2022, 17(6): 1074-1083. DOI: 10.11992/tis.202107024. [15] QIN R Y, LUO H Z, FAN Z H, et al. IBERT: idiom cloze-style reading comprehension with attention[EB/OL]. (2021-11-05)[2023-02-11]. http://arxiv.org/abs/2112.02994. DOI: 10.48550/arXiv.2112.02994. [16] ZHENG C J, HUANG M L, SUN A X. ChID: a large-scale Chinese IDiom dataset for cloze test[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 778-787. DOI: 10.18653/v1/P19-1075. [17] LONG S Y, WANG R, TAO K, et al. Synonym knowledge enhanced reader for Chinese idiom reading comprehension[C]// Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 3684-3695. DOI: 10.18653/v1/2020.coling-main.329. [18] 谭华, 朱鸿斌, 陈昌润, 等. 基于深度学习的中文成语推荐应用[J]. 工业控制计算机, 2022, 35(4): 90-91. DOI: 10.3969/j.issn.1001-182X.2022.04.035. [19] 徐家伟, 刘瑞芳, 高升, 等. 面向中文成语的阅读理解方法研究[J]. 中文信息学报, 2021, 35(7): 118-125. DOI: 10.3969/j.issn.1003-0077.2021.07.014. [20] 顾迎捷, 桂小林, 李德福, 等. 基于神经网络的机器阅读理解综述[J]. 软件学报, 2020, 31(7): 2095-2126. DOI: 10.13328/j.cnki.jos.006048. [21] 姬发家, 朱莹, 阴皓, 等. 基于混合神经网络的自然语言处理技术研究[J]. 电子设计工程, 2023, 31(10): 92-96. DOI: 10.14022/j.issn1674-6236.2023.10.020. [22] JIN D, GAO S Y, KAO J Y, et al. MMM: multi-stage multi-task learning for multi-choice reading comprehension[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8010-8017. DOI: 10.1609/aaai.v34i05.6310. [23] ZHANG S L, ZHAO H, WU Y W, et al. Dual co-matching network for multi-choice reading comprehension[EB/OL]. (2019-08-20)[2023-02-11]. http://arxiv.org/abs/1901.09381v2. DOI: 10.48550/arXiv.1901.09381. [24] ZHU P F, ZHANG Z S, ZHAO H, et al. DUMA: reading comprehension with transposition thinking[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 269-279. DOI: 10.1109/TASLP.2021.3138683. [25] 霍欢, 邹依婷, 周澄睿, 等. 一种应用于填空型阅读理解的句式注意力网络[J]. 小型微型计算机系统, 2019, 40(3): 482-487. DOI: 10.3969/j.issn.1000-1220.2019.03.004. [26] FU C Z, ZHANG Y. EA reader: enhance attentive reader for cloze-style question answering via multi-space context fusion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6375-6382. DOI: 10.1609/aaai.v33i01.33016375. [27] 盛艺暄, 兰曼. 利用外部知识辅助和多步推理的选择题型机器阅读理解模型[J]. 计算机系统应用, 2020, 29(4): 1-9. DOI: 10.15888/j.cnki.csa.007327. [28] YANG B S, MITCHELL T. Leveraging knowledge bases in LSTMs for improving machine reading[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 1436-1446. DOI: 10.18653/v1/P17-1132. [29] MIHAYLOV T, FRANK A. Knowledgeable reader: enhancing cloze-style reading comprehension with external commonsense knowledge[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 821-832. DOI: 10.18653/v1/P18-1076. [30] SUN Y B, GUO D Y, TANG D Y, et al. Knowledge based machine reading comprehension[EB/OL]. (2018-09-12)[2023-02-11]. http://arxiv.org/abs/1809.04267. DOI: 10.48550/arXiv1809.04267. [31] WANG S H, XU Y H, FANG Y W, et al. Training data is more valuable than you think: a simple and effective method by retrieving from training data[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 3170-3179. DOI: 10.18653/v1/2022.acl-long.226. [32] LOVENIA H, WILIE B, CHUNG W, et al. Clozer: adaptable data augmentation for cloze-style reading comprehension[C]// Proceedings of the 7th Workshop on Representation Learning for NLP. Stroudsburg, PA: Association for Computational Linguistics, 2022: 60-66. DOI: 10.18653/v1/2022.repl4nlp-1.7. [33] SUN Y, WANG S H, LI Y K, et al. ERNIE: enhanced representation through knowledge integration[EB/OL]. (2019-04-19)[2023-02-11]. http://arxiv.org/abs/1904.09223. DOI: 10.48550/arXiv.1904.09223. [34] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514. DOI: 10.1109/TASLP.2021.3124365. [35] WU C H, WU F Z, QI T, et al. NoisyTune: a little noise can help you finetune pretrained language models better[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 680-685. DOI: 10.18653/v1/2022.acl-short.76. |
[1] | SUN Xu, SHEN Bin, YAN Xin, ZHANG Jinpeng, XU Guangyi. Microblog Opinion Summarization Method Based on Transformer and TextRank [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 96-108. |
[2] | PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112. |
[3] | HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71. |
[4] | CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31-39. |
[5] | LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48. |
[6] | ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56. |
[7] | SUN Yansong, YANG Liang, LIN Hongfei. Humor Recognition of Sitcom Based on Multi-granularity of Segmentation Enhancement and Semantic Enhancement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 57-65. |
[8] | WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60. |
[9] | SONG Jun, HAN Xiao-yu, HUANG Yu, HUANG Ting-lei, FU Kun. A Method for Entity-Oriented Timeline Summarization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 36-41. |
[10] | ZHANG Fen, QU Wei-guang, ZHAO Hong-yan, ZHOU Jun-sheng. Shallow Parsing Based on CRF and Transformation-basedError-driven Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 147-150. |
[11] | ZHUO Guang-ping, SUN Jing-yu, LI Xian-hua, YU Xue-li. Personalized Recommendation Algorithm Based on CBR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 151-156. |
[12] | CHENG Xian-yi, PAN Yan, ZHU Qian, SUN Ping. Automatic Generating Algorithm of Event-oriented Multi-documentSummarization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 147-150. |
[13] | YANG Liang, PAN Feng-ming, LIN Hong-fei. Chunk-based Opinion Object Extraction and Application in OpinionAnalysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 151-156. |
[14] | CHENG Xian-yi, ZHU Qian, HAN Fei. Semantic Chunk of Question Sentence Analysis Based on HNC and Description Logics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 131-134. |
[15] | XIA Ning, LIN Hong-fei, YANG Zhi-hao, LI Yan-peng. Gene Mention Normalization Based on Semantic Featured Machine Learning Disambiguation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 144-147. |
|