Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 44-53.doi: 10.16088/j.issn.1001-6600.2020090601
Previous Articles Next Articles
SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai*
CLC Number:
[1] ZHANG X R,CAI X Z,JIN K R,et al. Determining the surface tension of two-dimensional nanosheets by a low-rate advancing contact angle measurement[J]. Langmuir,2019,35(25):8303-8315. DOI:10.1021/acs.langmuir.8b04104. [2] STRZECHA K. A new image analysis algorithm for contact angle measurement at high temperature[J]. Measurement Science and Technology,2020,31(3):035403. DOI:10.1088/1361-6501/ab52b3. [3] KUNG C H,SOW P K,ZAHIRI B,et al. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities[J]. Advanced Materials Interfaces,2019,6(18):1900839. DOI:10.1002/admi.201900839. [4] FARAZIN J,PIRGHOLI-GIVI G,AZIZIAN-KALANDARAGH Y. Wettability measurement,optical characteristics, and investigation of the quantum confinement effect of ZnS-scotch tape nanocomposite films prepared by successive ionic layer adsorption and reaction (SILAR) method[J]. Physica B:Condensed Matter,2019,564:94-103. DOI:10.1016/j.physb.2019.03.034. [5] DANISH M,NADHARI W N A W,AHMAD T,et al. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces[J]. Measurement, 2019,140:365-372. DOI:10.1016/j.measurement.2019.03.049. [6] HOORFAR M,NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion,2004,80(8):727-743. DOI:10.1080/00218460490477684. [7] HOORFAR M,NEUMANN A W. Recent progress in axisymmetric drop shape analysis (ADSA)[J]. Advances in Colloid and Interface Science, 2006,121(1/2/3):25-49. DOI:10.1016/j.cis.2006.06.001. [8] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Physical review E,2006,74(2):021509. DOI:10.1103/PhysRevE.74.021509. [9] EXTRAND C W,MOON S I. Contact angles on spherical surfaces[J]. Langmuir,2008,24(17):9470-9473. DOI:10.1021/la801091n. [10] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4):046708. DOI:10.1103/PhysRevE.75.046708. [11] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Computer Methods in Applied Mechanics and Engineering,2012,247/248:179-200. DOI:10.1016/j.cma.2012.07.023. [12] EXTRAND C W,MOON S I. Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces [J]. Langmuir,2012, 28(20):7775-7779. DOI:10.1021/la301312v. [13] BORMASHENKO E. Wetting of flat and rough curved surfaces[J]. The Journal of Physical Chemistry C,2009,113(40):17275-17277. DOI:10.1021/jp905237v. [14] GUILIZZONI M. Drop shape visualization and contact angle measurement on curved surfaces[J]. Journal of Colloid and Interface Science,2011,364(1):230-236. DOI:10.1016/j.jcis.2011.08.019. [15] 黄兵方,闻炳海,邱文,等. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版),2018,36(1):34-43. DOI:10.16088/j.issn.1001-6600.2018.01.005. [16] WEN B H,HUANG B F,QIN Z G,et al.Contact angle measurement in lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698. DOI:10.1016/j.camwa.2018.07.021. [17] 邱文,叶勇,周思浩,等. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2):27-37. DOI:10.16088/j.issn.1001-6600.2019.02.004. [18] PREMNATH K N,ABRAHAM J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics,2007,224(2):539-559. DOI:10.1016/j.jcp.2006.10.023. [19] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M]//WEAVER D P,SHIZGAL B D. Rarefied gas dynamics: theory and simulations. New York:American Institute of Aeronautics and Astronautics, Inc.,1994:450-458. DOI:10.2514/5.9781600866319.0450.0458. [20] LIANG H,LI Y,CHEN J X,et al. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio [J]. International Journal of Heat and Mass Transfer,2019,130:1189-1205. DOI:10.1016/j.ijheatmasstransfer.2018.09.050. [21] CHEN S Y,DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30:329-364. DOI:10.1146/annurev.fluid.30.1.329. [22] AIDUN C K,CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42:439-472. DOI:10.1146/annurev-fluid-121108-145519. [23] LI Q,LUO K H,KANG Q J,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52:62-105. DOI:10.1016/j.pecs.2015.10.001. [24] HE Y L,LIU Q,LI Q,et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review[J]. International Journal of Heat and Mass Transfer,2019,129:160-197. DOI: 10.1016/j.ijheatmasstransfer.2018.08.135. [25] XU A,SHYY W,ZHAO T S. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries[J]. Acta Mechanica Sinica,2017,33(3):555-574. DOI:10.1007/s10409-017-0667-6. [26] LI Y Y,WANG J X,CHEN X. Can a toilet promote virus transmission? From a fluid dynamics perspective[J]. Physics of Fluids, 2020,32(6):065107.DOI:10.1063/5.0013318.2. [27] LI Q,YU Y,LUO K H. Implementation of contact angles in the pseudopotential lattice Boltzmann simulations with curved boundaries[J]. Physical review E,2019,100(5):053313. DOI:10.1103/PhysRevE.100.053313. [28] GUO Z L,ASINARI P,ZHENG C G. Lattice Boltzmann equation for microscale gas flows of binary mixtures[J]. Physical Review E,2009,79(2):026702. DOI:10.1103/PhysRevE.79.026702. [29] WEN B H,ZHANG C Y,TU Y S,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. Journal of Computational Physics,2014,266:161-170. DOI:10.1016/j.jcp.2014.02.018. [30] WEN B H,ZHAO L,QIU W,et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios [J]. Physical Review E,2020, 102(1):013303. DOI:10.1103/PhysRevE.102.013303. [31] JAMET D,TORRES D,BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics,2002,182(1):262-276. DOI:10.1006/jcph.2002.7165. [32] WEN B H,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E ,2017,95(6):063305. DOI:10.1103/PhysRevE.95.063305. [33] WEN B H,QIN Z R,ZHANG C Y,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters),2015,112(4):44002. DOI:10.1209/0295-5075/112/44002. |
[1] | GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100. |
[2] | ZHAO Jinxiang, CHEN Yanyan, QIN Zhangrong, ZHANG Chaoying. A Modified Method Based on Chemical-PotentialLBM Multiphase Flow Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 87-95. |
[3] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
[4] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[5] | QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37. |
[6] | HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43. |
[7] | QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24. |
[8] | ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148. |
[9] | QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11. |
|