Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 44-53.doi: 10.16088/j.issn.1001-6600.2020090601

Previous Articles     Next Articles

Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method

SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai*   

  1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-09-06 Revised:2020-11-11 Online:2021-11-25 Published:2021-12-08

Abstract: Contact angle is an important characteristic quantity to measure the wetting of liquid on solid surface. Although many methods can be used to simulate the contact angle phenomenon and measure the contact angle, there is still no simple method for measuring the contact angle on a curved surface. Based on the chemical potential lattice Boltzmann method, this paper proposes a method to measure the contact angle of droplets on curved surfaces. A series of chemical potentials are set for the curved substrate to calculate the contact angle of a fixed drop on the curved surface to observe the wettability under different chemical potentials. Under the ideal condition without considering the gravity, compared with the calculation result of the spherical cap method, the contact angle obtained by the new method has a maximum error of about 3 degrees, which is in good agreement. When the influence of gravity is considered, the droplet of different sizes undergo different deformation, and the spherical cap method is no longer applicable, but the contact angle obtained by the model in this paper is basically unchanged, which is consistent with the theoretical expectation that the microscopic contact angle and gravity are independent.

Key words: contact angle measurement, curved surface, lattice Boltzmann method, chemical potential, wettability

CLC Number: 

  • O647.11
[1] ZHANG X R,CAI X Z,JIN K R,et al. Determining the surface tension of two-dimensional nanosheets by a low-rate advancing contact angle measurement[J]. Langmuir,2019,35(25):8303-8315. DOI:10.1021/acs.langmuir.8b04104.
[2] STRZECHA K. A new image analysis algorithm for contact angle measurement at high temperature[J]. Measurement Science and Technology,2020,31(3):035403. DOI:10.1088/1361-6501/ab52b3.
[3] KUNG C H,SOW P K,ZAHIRI B,et al. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities[J]. Advanced Materials Interfaces,2019,6(18):1900839. DOI:10.1002/admi.201900839.
[4] FARAZIN J,PIRGHOLI-GIVI G,AZIZIAN-KALANDARAGH Y. Wettability measurement,optical characteristics, and investigation of the quantum confinement effect of ZnS-scotch tape nanocomposite films prepared by successive ionic layer adsorption and reaction (SILAR) method[J]. Physica B:Condensed Matter,2019,564:94-103. DOI:10.1016/j.physb.2019.03.034.
[5] DANISH M,NADHARI W N A W,AHMAD T,et al. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces[J]. Measurement, 2019,140:365-372. DOI:10.1016/j.measurement.2019.03.049.
[6] HOORFAR M,NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion,2004,80(8):727-743. DOI:10.1080/00218460490477684.
[7] HOORFAR M,NEUMANN A W. Recent progress in axisymmetric drop shape analysis (ADSA)[J]. Advances in Colloid and Interface Science, 2006,121(1/2/3):25-49. DOI:10.1016/j.cis.2006.06.001.
[8] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Physical review E,2006,74(2):021509. DOI:10.1103/PhysRevE.74.021509.
[9] EXTRAND C W,MOON S I. Contact angles on spherical surfaces[J]. Langmuir,2008,24(17):9470-9473. DOI:10.1021/la801091n.
[10] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4):046708. DOI:10.1103/PhysRevE.75.046708.
[11] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Computer Methods in Applied Mechanics and Engineering,2012,247/248:179-200. DOI:10.1016/j.cma.2012.07.023.
[12] EXTRAND C W,MOON S I. Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces [J]. Langmuir,2012, 28(20):7775-7779. DOI:10.1021/la301312v.
[13] BORMASHENKO E. Wetting of flat and rough curved surfaces[J]. The Journal of Physical Chemistry C,2009,113(40):17275-17277. DOI:10.1021/jp905237v.
[14] GUILIZZONI M. Drop shape visualization and contact angle measurement on curved surfaces[J]. Journal of Colloid and Interface Science,2011,364(1):230-236. DOI:10.1016/j.jcis.2011.08.019.
[15] 黄兵方,闻炳海,邱文,等. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版),2018,36(1):34-43. DOI:10.16088/j.issn.1001-6600.2018.01.005.
[16] WEN B H,HUANG B F,QIN Z G,et al.Contact angle measurement in lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698. DOI:10.1016/j.camwa.2018.07.021.
[17] 邱文,叶勇,周思浩,等. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2):27-37. DOI:10.16088/j.issn.1001-6600.2019.02.004.
[18] PREMNATH K N,ABRAHAM J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics,2007,224(2):539-559. DOI:10.1016/j.jcp.2006.10.023.
[19] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M]//WEAVER D P,SHIZGAL B D. Rarefied gas dynamics: theory and simulations. New York:American Institute of Aeronautics and Astronautics, Inc.,1994:450-458. DOI:10.2514/5.9781600866319.0450.0458.
[20] LIANG H,LI Y,CHEN J X,et al. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio [J]. International Journal of Heat and Mass Transfer,2019,130:1189-1205. DOI:10.1016/j.ijheatmasstransfer.2018.09.050.
[21] CHEN S Y,DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30:329-364. DOI:10.1146/annurev.fluid.30.1.329.
[22] AIDUN C K,CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42:439-472. DOI:10.1146/annurev-fluid-121108-145519.
[23] LI Q,LUO K H,KANG Q J,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52:62-105. DOI:10.1016/j.pecs.2015.10.001.
[24] HE Y L,LIU Q,LI Q,et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review[J]. International Journal of Heat and Mass Transfer,2019,129:160-197. DOI: 10.1016/j.ijheatmasstransfer.2018.08.135.
[25] XU A,SHYY W,ZHAO T S. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries[J]. Acta Mechanica Sinica,2017,33(3):555-574. DOI:10.1007/s10409-017-0667-6.
[26] LI Y Y,WANG J X,CHEN X. Can a toilet promote virus transmission? From a fluid dynamics perspective[J]. Physics of Fluids, 2020,32(6):065107.DOI:10.1063/5.0013318.2.
[27] LI Q,YU Y,LUO K H. Implementation of contact angles in the pseudopotential lattice Boltzmann simulations with curved boundaries[J]. Physical review E,2019,100(5):053313. DOI:10.1103/PhysRevE.100.053313.
[28] GUO Z L,ASINARI P,ZHENG C G. Lattice Boltzmann equation for microscale gas flows of binary mixtures[J]. Physical Review E,2009,79(2):026702. DOI:10.1103/PhysRevE.79.026702.
[29] WEN B H,ZHANG C Y,TU Y S,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. Journal of Computational Physics,2014,266:161-170. DOI:10.1016/j.jcp.2014.02.018.
[30] WEN B H,ZHAO L,QIU W,et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios [J]. Physical Review E,2020, 102(1):013303. DOI:10.1103/PhysRevE.102.013303.
[31] JAMET D,TORRES D,BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics,2002,182(1):262-276. DOI:10.1006/jcph.2002.7165.
[32] WEN B H,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E ,2017,95(6):063305. DOI:10.1103/PhysRevE.95.063305.
[33] WEN B H,QIN Z R,ZHANG C Y,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters),2015,112(4):44002. DOI:10.1209/0295-5075/112/44002.
[1] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[2] ZHAO Jinxiang, CHEN Yanyan, QIN Zhangrong, ZHANG Chaoying. A Modified Method Based on Chemical-PotentialLBM Multiphase Flow Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 87-95.
[3] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[4] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[5] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[6] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[7] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
[8] ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148.
[9] QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .