Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 128-139.doi: 10.16088/j.issn.1001-6600.2024120304

• Mathematics and Statistics • Previous Articles     Next Articles

Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates

DENG Jinna1, LIU Qiumei1*, CHEN Yiming2, YANG Aimin1   

  1. 1. College of Science, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. School of Science, Yanshan University, Qinhuangdao Hebei 066004, China
  • Received:2024-12-03 Revised:2025-01-15 Published:2025-11-19

Abstract: In order to study the dynamic response of two kinds of viscoelastic axially moving plates, the governing equations of the axially moving plates are derived by using the variable-fractional model. Firstly, the variable-fractional differential equations are solved by using the shifted Bernstein polynomial as the basis function, and the operator matrix of the shifted Bernstein polynomial is derived. Secondly, the feasibility of the algorithm is verified by numerical examples. Thirdly, the displacement of ceramic plate and PET plate under harmonic load is further studied and compared. Finally the influence of axial moving speed on displacement of axial viscoelastic plate is analyzed, and the displacement changes of different material plates under different thickness changes are compared. The research results break through the variable-fractional order model of viscoelastic moving plate and provide a theoretical basis for the study of viscoelastic structure.

Key words: viscoelastic axially moving plate, differential equation of variable fractional order, shifted Bernstein polynomial, numerical simulation

CLC Number:  O221
[1] TANG Y Q, CHEN L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics-A/Solids, 2013, 37: 106-121. DOI: 10.1016/j.euromechsol.2012.05.010.
[2] SHU Z, YOU R K, ZHOU Y. Viscoelastic materials for structural dampers: a review[J]. Construction and Building Materials, 2022, 342: 127955. DOI: 10.1016/j.conbuildmat.2022.127955.
[3] 王磊, 陈一鸣, 冯君尧. 分数阶黏弹性Euler-Bernoulli梁的数值分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(5): 471-476.
[4] SHAO X D, HE G, SHEN X J, et al. Conceptual design of 1 000 m scale steel-UHPFRC composite truss arch bridge[J]. Engineering Structures, 2021, 226: 111430. DOI: 10.1016/j.engstruct.2020.111430.
[5] 冯君尧, 陈一鸣, 王磊. 黏弹性旋转梁的分数阶模型及其数值算法[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(3): 287-292.
[6] ROUZEGAR J, VAZIRZADEH M, HEYDARI M H. A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement[J]. Mechanics Research Communications, 2020, 110: 103618. DOI: 10.1016/j.mechrescom.2020.103618.
[7] NWAGOUM TUWA P R, MIWADINOU C H, MONWANOU A V, et al. Chaotic vibrations of nonlinear viscoelastic plate with fractional derivative model and subjected to parametric and external excitations[J]. Mechanics Research Communications, 2019, 97: 8-15. DOI: 10.1016/j.mechrescom.2019.04.001.
[8] 徐志刚. 三类微分方程的Euler小波数值解法[D]. 抚州: 东华理工大学, 2021. DOI: 10.27145/d. cnki.ghddc.2021.000320.
[9] 李静, 朱莉. 分数阶变系数微分方程的Euler小波解法[J]. 宁波工程学院学报, 2019, 31(1): 1-6.
[10] SUN L, CHEN Y M, DANG R Q, et al. Shifted Legendre polynomials algorithm used for the numerical analysis of viscoelastic plate with a fractional order model[J]. Mathematics and Computers in Simulation, 2022, 193: 190-203. DOI: 10.1016/j.matcom.2021.10.007.
[11] LOGHMAN E, KAMALI A, BAKHTIARI-NEJAD F, et al. Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam[J]. Applied Mathematical Modelling, 2021, 92: 297-314. DOI: 10. 1016/j.apm.2020.11.011.
[12] CAO J W, CHEN Y M, WANG Y H, et al. Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model[J]. Chaos, Solitons & Fractals, 2020, 141: 110342. DOI: 10.1016/j.chaos.2020.110342.
[13] CHEN Y M, WEI Y Q, LIU D Y, et al. Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[J]. Applied Mathematics Letters, 2015, 46: 83-88. DOI: 10.1016/j.aml.2015.02.010.
[14] HAN W, CHEN Y M, LIU D Y, et al. Numerical solution for a class of multi-order fractional differential equations with error correction and convergence analysis[J]. Advances in Difference Equations, 2018(1): 253. DOI: 10.1186/s13662-018-1702-z.
[15] CHEN Y M, LIU L Q, LI B F, et al. Numerical solution for the variable order linear cable equation with Bernstein polynomials[J]. Applied Mathematics and Computation, 2014, 238: 329-341. DOI: 10.1016/j.amc.2014.03.066.
[16] CHEN Y M, LIU L Q, LIU D Y, et al. Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[J]. Ain Shams Engineering Journal, 2018, 9(4): 1235-1241. DOI: 10.1016/j.asej.2016.07.002.
[17] 黄英杰, 周凤英, 许小勇, 等. 第六类Chebyshev小波配置法求分数阶微分方程数值解[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 130-143. DOI: 10.16088/j.issn.1001-6600.2022050602.
[18] CHEN Y M, HAN X N, LIU L C. Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis[J]. CMES-Computer Modeling in Engineering and Sciences, 2014, 97(5): 391-405.
[19] CAO J W, CHEN Y M, WANG Y H, et al. Numerical analysis of fractional viscoelastic column based on shifted Chebyshev wavelet function[J]. Applied Mathematical Modelling, 2021, 91: 374-389. DOI: 10.1016/j.apm.2020.09.055.
[20] WANG L, CHEN Y M. Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam[J]. Chaos, Solitons & Fractals, 2020, 132: 109585. DOI: 10.1016/j.chaos.2019.109585.
[21] DANG R Q, CHEN Y M. Fractional modelling and numerical simulations of variable-section viscoelastic Arches[J]. Applied Mathematics and Computation, 2021, 409: 126376. DOI: 10.1016/j.amc.2021.126376.
[22] WANG L, CHEN Y M, CHENG G, et al. Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads[J]. Chaos, Solitons & Fractals, 2020, 140: 110255. DOI: 10.1016/j.chaos.2020.110255.
[23] ROBINSON M T A, ADALI S. Effects of the thickness on the stability of axially moving viscoelastic rectangular plates[J]. Applied Acoustics, 2018, 140: 315-326. DOI: 10.1016/j.apacoust.2018.05.005.
[24] KOÇAL T. The dynamical behavior of the moving viscoelastic plate in contact with viscous fluid with finite depth under action of time-harmonic forces[J]. Ocean Engineering, 2020, 215: 107840. DOI: 10.1016/j.oceaneng.2020.107840.
[25] ZHOU Y F, WANG Z M. Dynamic instability of axially moving viscoelastic plate[J]. European Journal of Mechanics-A/Solids, 2019, 73: 1-10. DOI: 10.1016/j.euromechsol.2018.06.009.
[26] MARYNOWSKI K. Fractional rheological model of a metal alloy in the study vibrations of an axially moving aluminum beam in thermal environment[J]. International Journal of Mechanical Sciences, 2020, 174: 105458. DOI: 10.1016/j.ijmecsci.2020.105458.
[27] ZHANG D B, TANG Y Q, CHEN L Q. Internal resonance in parametric vibrations of axially accelerating viscoelastic plates[J]. European Journal of Mechanics-A/Solids, 2019, 75: 142-155. DOI: 10.1016/j.euromechsol.2019.01.021.
[28] SAKSA T, BANICHUK N, JERONEN J, et al. Dynamic analysis for axially moving viscoelastic panels[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3355-3366. DOI: 10.1016/j.ijsolstr.2012.07.017.
[29] JAVADI S, BABOLIAN E, TAHERI Z. Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials[J]. Journal of Computational and Applied Mathematics, 2016, 303: 1-14. DOI: 10.1016/j.cam.2016.02.025.
[30] CHEN S B, JAHANSHAHI H, ALHADJI ABBA O, et al. The effect of market confidence on a financial system from the perspective of fractional Calculus: Numerical investigation and circuit realization[J]. Chaos, Solitons & Fractals, 2020, 140: 110223. DOI: 10.1016/j.chaos.2020.110223.
[1] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29-41.
[2] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42-53.
[3] ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139.
[4] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[5] HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81.
[6] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[7] CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21.
[8] LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[6] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[7] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[8] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[9] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[10] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .