Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 92-106.doi: 10.16088/j.issn.1001-6600.2024123003

• Intelligence Information Processing • Previous Articles     Next Articles

Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning

YI Jianbing1,2*, HU Yayi1,2, CAO Feng1,2, LI Jun1,2, PENG Xin1,2, CHEN Xin1,2   

  1. 1. College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China;
    2. Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control (Jiangxi University of Science and Technology), Ganzhou Jiangxi 341000, China
  • Received:2024-12-30 Revised:2025-05-15 Published:2025-11-19

Abstract: Lung cancer is the most deadly cancer in the world, and pulmonary nodules are the main manifestation of early-stage lung cancer. However, existing algorithms have problems with missed detections, false positives and high model complexity when detecting small lung tumors. To solve the above problems, a pulmonary nodules detection algorithm based on channel mask and dynamic channel pruning is proposed. Firstly, the algorithm uses cross-layer connection to fuse shallow features with deep features, and simplifies the path aggregation network, thereby obtaining more abundant features while reducing the number of model parameters. Secondly, the algorithm introduces the SE channel attention mechanism in the residual connection, and adaptively adjusting the weight of each channel to focus on the key information in the lesion in order to improve the detection ability of the algorithm for pulmonary lesions. Finally, the algorithm uses a channel mask for dynamic channel pruning, which completely retains the skip connections in the module, thereby enhancing the feature representation ability of the model. The proposed algorithm is compared with the YOLOv8n algorithm in the performance test on the LUNA16 dataset. The model weight of this algorithm is 0.3 MiB smaller than that of the YOLOv8n algorithm, and the recall rate and mAP@0.5 increase by 2.0 percentage points and 1.7 percentage points, respectively. The proposed algorithm is compared with the YOLOv8n algorithm in the performance test on the Lung-PET-CT-Dx dataset. The model weight of this algorithm is 0.9 MiB smaller than that of YOLOv8n algorithm, and the recall rate and mAP@0.5 increase by 0.8 percentage points and 0.4 percentage points, respectively. The experimental results show that the proposed model has the characteristics of higher accuracy and fewer parameters in lung cancer detection.

Key words: lung cancer detection, channel mask, dynamic channel pruning, cross-layer feature fusion, channel attention

CLC Number:  TP391.41
[1] World Health Organization. Global cancer burden growing, amidst mounting need for services[R/OL]. (2024-02-01)[2024-12-30]. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing-amidst-mounting-need-for-services.
[2] 孙晨皓, 赖惠成, 李亚东, 等. 改进YOLOX在行人目标检测中的应用研究[J]. 东北师大学报(自然科学版), 2023. 55(2):76-84. DOI: 10.16163/j.cnki.dslkxb202112030001.
[3] 催海彬, 蒲东兵, 陆云凤, 等. 基于CA-YOLO的安全帽检测[J]. 东北师大学报(自然科学版), 2023. 55(3): 94-100. DOI: 10.16163/j.cnki.dslkxb202211030001.
[4] ZHANG Y F, ZHU Z Y, HOU J H, et al. Spatial-temporal graph enhanced DETR towards multi-frame 3D object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10614-10628. DOI: 10.1109/TPAMI.2024.3443335.
[5] LI M Y, JIA T, WANG H,et al. AO-DETR: anti-overlapping DETR for X-ray prohibited items detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(7): 12076-12090. DOI: 10.1109/TNNLS.2024.3487833.
[6] LI Z L, XU X G, LIM S, et al.UniMODE: unified monocular 3D object detection[C] //2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2024: 16561-16570. DOI: 10.1109/CVPR52733.2024.01567.
[7] LI X, LV C Q, WANG W H, et al. Generalized focal loss: towards efficient representation learning for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3139-3153. DOI: 10.1109/TPAMI.2022.3180392.
[8] LIU K, FU Z H, JIN S, et al. ESOD: efficient small object detection on high-resolution images[J]. IEEE Transactions on Image Processing, 2025, 34: 183-195. DOI: 10.1109/TIP.2024.3501853.
[9] SOGANCIOGLU E, VAN GINNEKEN B, BEHRENDT F, et al. Nodule detection and generation on chest X-rays: NODE21 challenge[J]. IEEE Transactions on Medical Imaging, 2024, 43(8): 2839-2853. DOI: 10.1109/TMI.2024.3382042.
[10] 李阳, 高轼奇. 基于数据增强及注意力机制的肺结节检测系统[J]. 北京邮电大学学报, 2022, 45(4): 25-30. DOI: 10.13190/j.jbupt.2021-189.
[11] XU J, REN H J, CAI S Z, et al. An improved faster R-CNN algorithm for assisted detection of lung nodules[J]. Computers in Biology and Medicine, 2023, 153: 106470. DOI: 10.1016/j.compbiomed.2022.106470.
[12] 杨嘉楠, 王忠昊, 王昊霖, 等. 改进BYOL的非小细胞肺癌表皮生长因子受体基因突变预测[J]. 光学精密工程, 2022, 30(9): 1080-1090. DOI: 10.37188/OPE.20223009.1080.
[13] GUO Z T, ZHAO LL, YUAN J L, et al. MSANet: multiscale aggregation network integrating spatial and channel information for lung nodule detection[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(6): 2547-2558. DOI: 10.1109/JBHI.2021.3131671.
[14] 周涛,叶鑫宇,刘凤珍,等. 利用跨模态轻量级YOLOv5模型的PET/CT肺部肿瘤检测[J]. 电子与信息学报, 2024, 46(2): 624-632. DOI: 10.11999/JEIT230052.
[15] GUAN Y S, LIU N, ZHAO P Y, et al.DAIS: automatic channel pruning via differentiable annealing indicator search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9847-9858. DOI: 10.1109/TNNLS.2022.3161284.
[16] CHERAGHIAN A, RAHMAN S, FANG P F, et al. Semantic-aware knowledge distillation for few-shot class-incremental learning[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 2534-2543. DOI: 10.1109/CVPR46437.2021.00256.
[17] LAN T Z, ZENG F X, YI Z, et al.ICNoduleNet: enhancing pulmonary nodule detection performance on sharp kernel CT imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(8): 4751-4760. DOI: 10.1109/JBHI.2024.3402186.
[18] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/yolov5: v3.1-bug fixes and performance improvements[EB/OL]. (2020-10-29)[2024-12-30]. https://zenodo.org/records/4154370. DOI: 10.5281/zenodo.4154370.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745.
[20] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824.
[21] HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks[C] //2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 1398-1406. DOI: 10.1109/ICCV.2017.155.
[22] YANG T J, HOWARD A, CHEN B, et al.NetAdapt: platform-aware neural network adaptation for mobile applications[C] //Computer Vision-ECCV 2018: LNCS Volume 11214. Cham: Springer, 2018: 289-304. DOI: 10.1007/978-3-030-01249-6_18.
[23] LI S J, GONG W Y, WANG L, et al. Evolutionary multitaskingvia reinforcement learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 762-775. DOI: 10.1109/TETCI.2023.3281876.
[24] TANG S N, ZHU Y, YUAN S Q. Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J]. Reliability Engineering & System Safety, 2022, 224: 108560. DOI: 10.1016/j.ress.2022.108560.
[25] WU B C, DAI X L, ZHANG P Z, et al.FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 10726-10734. DOI: 10.1109/CVPR.2019.01099.
[26] DONG X Y, YANG Y. Network pruning via transformable architecture search[C] //Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Red Hook, NY: Curran Associates Inc., 2020: 69.
[27] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. DOI: 10.1016/j.media.2017.06.015.
[28] FANG D, JIANG H, CHEN W Y, et al. Pulmonary nodule detection on lung parenchyma images usinghyber-deep algorithm[J]. Heliyon, 2023, 9(7): e17599. DOI: 10.1016/j.heliyon.2023.e17599.
[29] 赵奎, 仇慧琪, 李旭, 等. 结合注意力和多路径融合的实时肺结节检测算法[J]. 计算机应用, 2024, 44(3): 945-952. DOI: 10.11772/j.issn.1001-9081.2023040424.
[30] QIN R X, WANG Z Z, JIANG L Y, et al. Fine-grained lung cancer classification from PET and CT images based on multidimensional attention mechanism[J]. Complexity, 2020, 2020: 6153657. DOI: 10.1155/2020/6153657.
[31] 周涛, 叶鑫宇, 赵雅楠, 等. 跨模态注意力YOLOv5的PET/CT肺部肿瘤检测[J]. 中国图象图形学报, 2024, 29(4): 1070-1084. DOI: 10.11834/jig.230169.
[32] 张琼, 杭益柳, 邱建林, 等. 高效注意力金字塔网络在肺结节检测的应用[J]. 中国医学物理学杂志, 2024, 41(11): 1361-1369. DOI: 10.3969/j.issn.1005-202X.2024.11.007.
[33] JACOB C, MENON G C. Pathological categorization of lung carcinoma from multimodality images using convolutional neural networks[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1681-1695. DOI: 10.1002/ima.22684.
[34] BARBOUCHI K, EL HAMDI D, ELOUEDI I, et al. A transformer-based deep neural network for detection and classification of lung cancer via PET/CT images[J]. International Journal of Imaging Systems and Technology, 2023, 33(4): 1383-1395. DOI: 10.1002/ima.22858.
[35] 梁智欣, 邓戈龙, 魏夏平, 等. 长尾分布下的PET-CT肺癌图像的深度学习网络检测与定位探索[J]. 中国医学物理学杂志, 2022, 39(12): 1473-1484. DOI: 10.3969/j.issn.1005-202X.2022.12.004.
[36] LI D H, LU Y, GAO Q, et al.LiteYOLO-ID: a lightweight object detection network for insulator defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5023812. DOI: 10.1109/TIM.2024.3418082.
[1] YI Jianbing, ZHANG Yuxian, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of 3D Human Pose Estimation Network Based on Spatio-Temporal Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 130-144.
[2] WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86.
[3] ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[6] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[7] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .