Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 92-106.doi: 10.16088/j.issn.1001-6600.2024123003
• Intelligence Information Processing • Previous Articles Next Articles
YI Jianbing1,2*, HU Yayi1,2, CAO Feng1,2, LI Jun1,2, PENG Xin1,2, CHEN Xin1,2
| [1] World Health Organization. Global cancer burden growing, amidst mounting need for services[R/OL]. (2024-02-01)[2024-12-30]. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing-amidst-mounting-need-for-services. [2] 孙晨皓, 赖惠成, 李亚东, 等. 改进YOLOX在行人目标检测中的应用研究[J]. 东北师大学报(自然科学版), 2023. 55(2):76-84. DOI: 10.16163/j.cnki.dslkxb202112030001. [3] 催海彬, 蒲东兵, 陆云凤, 等. 基于CA-YOLO的安全帽检测[J]. 东北师大学报(自然科学版), 2023. 55(3): 94-100. DOI: 10.16163/j.cnki.dslkxb202211030001. [4] ZHANG Y F, ZHU Z Y, HOU J H, et al. Spatial-temporal graph enhanced DETR towards multi-frame 3D object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10614-10628. DOI: 10.1109/TPAMI.2024.3443335. [5] LI M Y, JIA T, WANG H,et al. AO-DETR: anti-overlapping DETR for X-ray prohibited items detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(7): 12076-12090. DOI: 10.1109/TNNLS.2024.3487833. [6] LI Z L, XU X G, LIM S, et al.UniMODE: unified monocular 3D object detection[C] //2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2024: 16561-16570. DOI: 10.1109/CVPR52733.2024.01567. [7] LI X, LV C Q, WANG W H, et al. Generalized focal loss: towards efficient representation learning for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3139-3153. DOI: 10.1109/TPAMI.2022.3180392. [8] LIU K, FU Z H, JIN S, et al. ESOD: efficient small object detection on high-resolution images[J]. IEEE Transactions on Image Processing, 2025, 34: 183-195. DOI: 10.1109/TIP.2024.3501853. [9] SOGANCIOGLU E, VAN GINNEKEN B, BEHRENDT F, et al. Nodule detection and generation on chest X-rays: NODE21 challenge[J]. IEEE Transactions on Medical Imaging, 2024, 43(8): 2839-2853. DOI: 10.1109/TMI.2024.3382042. [10] 李阳, 高轼奇. 基于数据增强及注意力机制的肺结节检测系统[J]. 北京邮电大学学报, 2022, 45(4): 25-30. DOI: 10.13190/j.jbupt.2021-189. [11] XU J, REN H J, CAI S Z, et al. An improved faster R-CNN algorithm for assisted detection of lung nodules[J]. Computers in Biology and Medicine, 2023, 153: 106470. DOI: 10.1016/j.compbiomed.2022.106470. [12] 杨嘉楠, 王忠昊, 王昊霖, 等. 改进BYOL的非小细胞肺癌表皮生长因子受体基因突变预测[J]. 光学精密工程, 2022, 30(9): 1080-1090. DOI: 10.37188/OPE.20223009.1080. [13] GUO Z T, ZHAO LL, YUAN J L, et al. MSANet: multiscale aggregation network integrating spatial and channel information for lung nodule detection[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(6): 2547-2558. DOI: 10.1109/JBHI.2021.3131671. [14] 周涛,叶鑫宇,刘凤珍,等. 利用跨模态轻量级YOLOv5模型的PET/CT肺部肿瘤检测[J]. 电子与信息学报, 2024, 46(2): 624-632. DOI: 10.11999/JEIT230052. [15] GUAN Y S, LIU N, ZHAO P Y, et al.DAIS: automatic channel pruning via differentiable annealing indicator search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9847-9858. DOI: 10.1109/TNNLS.2022.3161284. [16] CHERAGHIAN A, RAHMAN S, FANG P F, et al. Semantic-aware knowledge distillation for few-shot class-incremental learning[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 2534-2543. DOI: 10.1109/CVPR46437.2021.00256. [17] LAN T Z, ZENG F X, YI Z, et al.ICNoduleNet: enhancing pulmonary nodule detection performance on sharp kernel CT imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(8): 4751-4760. DOI: 10.1109/JBHI.2024.3402186. [18] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/yolov5: v3.1-bug fixes and performance improvements[EB/OL]. (2020-10-29)[2024-12-30]. https://zenodo.org/records/4154370. DOI: 10.5281/zenodo.4154370. [19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745. [20] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824. [21] HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks[C] //2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 1398-1406. DOI: 10.1109/ICCV.2017.155. [22] YANG T J, HOWARD A, CHEN B, et al.NetAdapt: platform-aware neural network adaptation for mobile applications[C] //Computer Vision-ECCV 2018: LNCS Volume 11214. Cham: Springer, 2018: 289-304. DOI: 10.1007/978-3-030-01249-6_18. [23] LI S J, GONG W Y, WANG L, et al. Evolutionary multitaskingvia reinforcement learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 762-775. DOI: 10.1109/TETCI.2023.3281876. [24] TANG S N, ZHU Y, YUAN S Q. Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J]. Reliability Engineering & System Safety, 2022, 224: 108560. DOI: 10.1016/j.ress.2022.108560. [25] WU B C, DAI X L, ZHANG P Z, et al.FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 10726-10734. DOI: 10.1109/CVPR.2019.01099. [26] DONG X Y, YANG Y. Network pruning via transformable architecture search[C] //Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Red Hook, NY: Curran Associates Inc., 2020: 69. [27] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. DOI: 10.1016/j.media.2017.06.015. [28] FANG D, JIANG H, CHEN W Y, et al. Pulmonary nodule detection on lung parenchyma images usinghyber-deep algorithm[J]. Heliyon, 2023, 9(7): e17599. DOI: 10.1016/j.heliyon.2023.e17599. [29] 赵奎, 仇慧琪, 李旭, 等. 结合注意力和多路径融合的实时肺结节检测算法[J]. 计算机应用, 2024, 44(3): 945-952. DOI: 10.11772/j.issn.1001-9081.2023040424. [30] QIN R X, WANG Z Z, JIANG L Y, et al. Fine-grained lung cancer classification from PET and CT images based on multidimensional attention mechanism[J]. Complexity, 2020, 2020: 6153657. DOI: 10.1155/2020/6153657. [31] 周涛, 叶鑫宇, 赵雅楠, 等. 跨模态注意力YOLOv5的PET/CT肺部肿瘤检测[J]. 中国图象图形学报, 2024, 29(4): 1070-1084. DOI: 10.11834/jig.230169. [32] 张琼, 杭益柳, 邱建林, 等. 高效注意力金字塔网络在肺结节检测的应用[J]. 中国医学物理学杂志, 2024, 41(11): 1361-1369. DOI: 10.3969/j.issn.1005-202X.2024.11.007. [33] JACOB C, MENON G C. Pathological categorization of lung carcinoma from multimodality images using convolutional neural networks[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1681-1695. DOI: 10.1002/ima.22684. [34] BARBOUCHI K, EL HAMDI D, ELOUEDI I, et al. A transformer-based deep neural network for detection and classification of lung cancer via PET/CT images[J]. International Journal of Imaging Systems and Technology, 2023, 33(4): 1383-1395. DOI: 10.1002/ima.22858. [35] 梁智欣, 邓戈龙, 魏夏平, 等. 长尾分布下的PET-CT肺癌图像的深度学习网络检测与定位探索[J]. 中国医学物理学杂志, 2022, 39(12): 1473-1484. DOI: 10.3969/j.issn.1005-202X.2022.12.004. [36] LI D H, LU Y, GAO Q, et al.LiteYOLO-ID: a lightweight object detection network for insulator defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5023812. DOI: 10.1109/TIM.2024.3418082. |
| [1] | YI Jianbing, ZHANG Yuxian, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of 3D Human Pose Estimation Network Based on Spatio-Temporal Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 130-144. |
| [2] | WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86. |
| [3] | ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49-57. |
|