Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 49-57.doi: 10.16088/j.issn.1001-6600.2021081303

Previous Articles     Next Articles

Road Vehicle Tracking Algorithm Based on Improved YOLOv5

ZHANG Wenlong, NAN Xinyuan*   

  1. School of Electrical Engineering, Xinjiang University, Urumchi Xinjiang 830047, China
  • Received:2021-08-13 Revised:2021-09-29 Published:2022-05-31

Abstract: To solve the problem that it's difficult for the large amount of network parameters and calculations for existing multi-object tracking algorithm to meet the real-time requirements of mobile devices, a road vehicle multi-object tracking algorithm is proposed by improving the JDE tracking algorithm. Firstly, in order to improve the tracking accuracy of the algorithm and reduce the number of ID switching, the association fusion network is used to solve the competition problem of multi-task learning in the JDE algorithm. Secondly, in order to reduce the complexity of the model and improve the real-time detection speed of the model, the improved EfficientNetV2 is used to rebuild the feature extraction network in YOLOv5. Finally, the improved YOLOv5 detection algorithm is combined with the JDE tracking algorithm to achieve multi-object tracking of road vehicles. The experimental results show that compared with the original JDE tracking algorithm, the proposed method improves MOTA by 0.3percentage point and tracking speed by about 43.2%. It can meet the speed requirements for vehicle tracking in actual autonomous driving scenarios.

Key words: vehicle tracking, EfficientNet, channel attention, associative fusion network, YOLOv5

CLC Number: 

  • TP391.41
[1] 张可, 杨灿坤, 周春平, 等. 无人机视频图像运动目标检测算法综述[J]. 液晶与显示, 2019, 34(1): 98-109. DOI: 10.3788/YJYXS20193401.0098.
[2] 张灿龙, 苏建才, 李志欣, 等. 基于AdaBoost置信图的红外与可见光目标跟踪[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 42-50. DOI: 10.16088/j.issn.1001-6600.2018.04.006.
[3] 张灿龙, 李燕茹, 李志欣, 等. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. DOI: 10.16088/j.issn.1001-6600.2020.05.002.
[4] 黄一凡, 杨建业, 戚国庆. 基于二自由度转台的双目视觉跟踪技术研究[J]. 电子设计工程, 2018, 26(14):181-185. DOI: 10.14022/j.cnki.dzsjgc.2018.14.039.
[5] 冯霞, 杜佳浩, 段仪浓, 等. 基于深度学习的行人重识别研究综述[J]. 计算机应用研究, 2020, 37(11): 3220-3226, 3240. DOI: 10.19734/j.issn.1001-3695.2019.09.0514.
[6] 尹梓睿, 张索非, 张磊, 等. 适于行人重识别的二分支EfficientNet网络设计[J]. 信号处理, 2020, 36(9): 1481-1488. DOI: 10.16798/j.issn.1003-0530.2020.09.013.
[7] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// 2017 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE Press, 2017: 3645-3649. DOI: 10.1109/ICIP.2017.8296962.
[8] ZHOU Z W, XING J L, ZHANG M D, et al. Online multi-target tracking with tensor-based high-order graph matching[C]// 2018 24th International Conference on Pattern Recognition(ICPR). Piscataway, NJ: IEEE Press, 2018: 1809-1814. DOI: 10.1109/ICPR.2018.8545450.
[9] WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[EB/OL]. (2020-07-14)[2021-08-13]. https://arxiv.org/abs/1909.12605.
[10] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2021-08-13]. https://arxiv.org/abs/1804.02767v1.
[11] ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087. DOI: 10.1007/s11263-021-01513-4.
[12] YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 2403-2412. DOI: 10.1109/CVPR.2018.00255.
[13] ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-25)[2021-08-13]. https://arxiv.org/abs/1904.07850.
[14] 晏康, 曾凤彩, 何宁, 等. 引入注意力机制的JDE多目标跟踪方法[J/OL]. 计算机工程与应用, 2021[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210524.0920.004.html. DOI: 10.3778/j.issn.1002-8331.2104-0049.
[15] 薛俊韬, 马若寒, 胡超芳. 基于MobileNet的多目标跟踪深度学习算法[J]. 控制与决策, 2021, 36(8): 1991-1996. DOI: 10.13195/j.kzyjc.2019.1424.
[16] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474.
[17] 马永杰, 马芸婷, 程时升, 等. 基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. DOI: 10.19818/j.cnki.1671-1637.2021.02.019.
[18] HU J, SHEN L, AIBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[19] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11531-11539. DOI: 10.1109/CVPR42600.2020.01155.
[20] QIN Z Q, ZHANG P Y, WU F, et al. FCANet: frequency channel attention networks[EB/OL]. (2021-07-23)[2021-08-13]. https://arxiv.org/abs/2012.11879.
[21] WOO S H, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018: LNCS volume 11211. Cham: Springer Nature Switzerland AG, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
[23] TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[EB/OL]. (2021-06-23)[2021-08-13]. https://arxiv.org/abs/2104.00298.
[24] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 3141-3149. DOI: 10.1109/CVPR.2019.00326.
[25] XU D,OUYANG W L, WANG X G, et al. PAD-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 675-684. DOI: 10.1109/CVPR.2018.00077.
[26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913.
[1] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[2] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[3] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[4] MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90.
[5] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[6] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[7] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
[8] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61-67.
[9] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73.
[10] CAI Bing, ZHANG Canlong, LI Zhixin. Tracking Infrared-visible Target with Joint Histogram [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 37-44.
[11] HE Peng, LIU Gao-kai, LI Jing-hui. Fatigue Driving Monitoring and Early Warning System Based on Machine Vision [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 25-29.
[12] WANG Dong-xu, SONG Shu-xiang, JIANG Pin-qun. The Algorithm of Identifying the Front Side of Bamboo Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 14-19.
[13] MA Xian-bing, SUN Shui-fa, QIN Yin-shi, GUO Qing, XIA Ping. Object Tracking Algorithm of On-line Boosting Based on Particle Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 100-105.
[14] SUN Shui-fa, LI Le-peng, DONG Fang-min, ZOU Yao-bin, CHEN Peng. Bi-histogram Equalization Based on Partially Overlapped Sub-block with Iterative Threshold [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 119-126.
[15] TANG Zhen-jun, DAI Yu-min, ZHANG Xian-quan, ZHANG Shi-chao. Perceptual Image Hash Function Using DCT-Based Feature Points [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 135-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .