Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 120-127.doi: 10.16088/j.issn.1001-6600.2024111001

• Mathematics and Statistics • Previous Articles     Next Articles

Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data

JIANG Yunlu*, LU Huijie, HUANG Xiaowen   

  1. School of Economics, Jinan University, Guangzhou Guangdong 510632, China
  • Received:2024-11-10 Revised:2024-12-25 Published:2025-11-19

Abstract: Panel data can explore and explain the dynamic changes and heterogeneity differences behind the data, making it a research hotspot in many fields.This article addresses the issue of variable selection in panel data with individual fixed effects. Firstly, a filter matrix is introduced to eliminate the fixed effects of panel data, and then estimates the regression coefficients and conducts variable selection through the adaptive LASSO-penalized weighted composite quantile regression method. Secondly, the weighted composite quantile regression applies data-driven weights to each different quantile regression. Thirdly, the results of numerical simulations indicate that this method outperforms the adaptive LASSO-penalized composite quantile regression method and the least squares method in both estimation accuracy and variable selection accuracy. Finally, the proposed method is applied to analyze international economic panel data, and the results show that the goodness of fit of the proposed method is higher than that of the other two methods.

Key words: fixed effect, panel data, weighted composite quantile regression, variable selection

CLC Number:  O212.4
[1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x.
[2] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. DOI: 10.1198/016214501753382273.
[3] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429. DOI: 10.1198/016214506000000735.
[4] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320. DOI: 10.1111/j.1467-9868.2005.00503.x.
[5] WEN C H, WANG X Q, WANG S L. Laplace error penalty-based variable selection in high dimension[J]. Scandinavian Journal of Statistics, 2015, 42(3): 685-700. DOI: 10.1111/sjos.12130.
[6] BELLONI A, CHERNOZHUKOV V, HANSEN C, et al. Inference in high-dimensional panel models with an application to Gun control[J]. Journal of Business & Economic Statistics, 2016, 34(4): 590-605. DOI: 10.1080/07350015.2015.1102733.
[7] 田果, 杨宜平. 面板数据固定效应线性回归模型的变量选择[J/OL]. 山西大学学报(自然科学版), 1-8[2024-05-21].https://doi.org/10.13451/j.sxu.ns.2024023.
[8] WU Y, LIU Y. Variable selection in quantile regression[J]. Statistica Sinica, 2009,19: 801-817.
[9] FAN J Q, FAN Y Y, BARUT E. Adaptive robust variable selection[J]. Annals of Statistics, 2014, 42(1): 324-351. DOI: 10.1214/13-AOS1191.
[10] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3): 1108-1126. DOI: 10.1214/07-aos507.
[11] 罗登菊, 戴家佳, 罗兴甸. 随机效应模型的复合分位数回归估计[J]. 贵州大学学报(自然科学版), 2019, 36(2): 96-100, 108. DOI: 10.15958/j.cnki.gdxbzrb.2019.02.19.
[12] QU L Q, HAO M L, SUN L Q. Sparse composite quantile regression with ultra-high dimensional heterogeneous data[J]. Statistica Sinica, 2022, 32(1): 459-475. DOI: 10.5705/ss.202020.0115.
[13] SONG Y Q, LI Z T, FANG M L. Robust variable selection based on penalized composite quantile regression for high-dimensional single-index models[J]. Mathematics, 2022, 10(12): 2000. DOI: 10.3390/math10122000.
[14] 杨晓蓉, 李路, 武皓月, 等. 删失部分线性可加模型的复合分位数回归及应用[J]. 应用概率统计, 2023, 39(4): 604-622. DOI: 10.3969/j.issn.1001-4268.2023.04.010.
[15] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129. DOI: 10.16088/j.issn.1001-6600.2023102501.
[16] 杨宜平, 赵培信, 黄霞. 面板数据下带固定效应的线性回归模型的稳健变量选择[J].数理统计与管理, 2024, 43(1): 50-57.
[17] JIANG X J, JIANG J C, SONG X Y. Oracle model selection for nonlinear models based on weighted composite quantile regression accelerated failure time model[J]. Statistica Sinica, 2012, 22(4): 1479-1506. DOI: 10.5705/ss.2010.203.
[18] JIANG Y L, LI H. Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors[J]. Journal of the Korean Statistical Society, 2014, 43(4): 531-543. DOI: 10.1016/j.jkss.2014.03.004.
[19] ARELLANO M. Panel data econometrics[M]. Oxford:Oxford University Press, 2003.DOI: 10.1093/0199245282.001.0001.
[20] HUNTER D R, LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2004, 58(1): 30-37. DOI: 10.1198/0003130042836.
[21] HUNTER D R, LANGE K. Quantile regression via an MM algorithm[J]. Journal of Computational and Graphical Statistics, 2000, 9(1): 60-77. DOI: 10.1080/10618600.2000.10474866.
[22] FEENSTRA R C, INKLAAR R, TIMMER M P. The next generation of the Penn world table[J]. American Economic Review, 2015, 105(10): 3150-3182. DOI: 10.1257/aer.20130954.
[1] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42.
[2] XU Ping, ZHONG Simin, LI Binbin, XIONG Wenjun. Conditional Independence Screening in Sparse Ultra-high Dimensional Nonparametric Additive Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 100-107.
[3] LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[6] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[7] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[8] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[9] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .