Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 120-127.doi: 10.16088/j.issn.1001-6600.2024111001
• Mathematics and Statistics • Previous Articles Next Articles
JIANG Yunlu*, LU Huijie, HUANG Xiaowen
| [1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x. [2] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. DOI: 10.1198/016214501753382273. [3] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429. DOI: 10.1198/016214506000000735. [4] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320. DOI: 10.1111/j.1467-9868.2005.00503.x. [5] WEN C H, WANG X Q, WANG S L. Laplace error penalty-based variable selection in high dimension[J]. Scandinavian Journal of Statistics, 2015, 42(3): 685-700. DOI: 10.1111/sjos.12130. [6] BELLONI A, CHERNOZHUKOV V, HANSEN C, et al. Inference in high-dimensional panel models with an application to Gun control[J]. Journal of Business & Economic Statistics, 2016, 34(4): 590-605. DOI: 10.1080/07350015.2015.1102733. [7] 田果, 杨宜平. 面板数据固定效应线性回归模型的变量选择[J/OL]. 山西大学学报(自然科学版), 1-8[2024-05-21].https://doi.org/10.13451/j.sxu.ns.2024023. [8] WU Y, LIU Y. Variable selection in quantile regression[J]. Statistica Sinica, 2009,19: 801-817. [9] FAN J Q, FAN Y Y, BARUT E. Adaptive robust variable selection[J]. Annals of Statistics, 2014, 42(1): 324-351. DOI: 10.1214/13-AOS1191. [10] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3): 1108-1126. DOI: 10.1214/07-aos507. [11] 罗登菊, 戴家佳, 罗兴甸. 随机效应模型的复合分位数回归估计[J]. 贵州大学学报(自然科学版), 2019, 36(2): 96-100, 108. DOI: 10.15958/j.cnki.gdxbzrb.2019.02.19. [12] QU L Q, HAO M L, SUN L Q. Sparse composite quantile regression with ultra-high dimensional heterogeneous data[J]. Statistica Sinica, 2022, 32(1): 459-475. DOI: 10.5705/ss.202020.0115. [13] SONG Y Q, LI Z T, FANG M L. Robust variable selection based on penalized composite quantile regression for high-dimensional single-index models[J]. Mathematics, 2022, 10(12): 2000. DOI: 10.3390/math10122000. [14] 杨晓蓉, 李路, 武皓月, 等. 删失部分线性可加模型的复合分位数回归及应用[J]. 应用概率统计, 2023, 39(4): 604-622. DOI: 10.3969/j.issn.1001-4268.2023.04.010. [15] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129. DOI: 10.16088/j.issn.1001-6600.2023102501. [16] 杨宜平, 赵培信, 黄霞. 面板数据下带固定效应的线性回归模型的稳健变量选择[J].数理统计与管理, 2024, 43(1): 50-57. [17] JIANG X J, JIANG J C, SONG X Y. Oracle model selection for nonlinear models based on weighted composite quantile regression accelerated failure time model[J]. Statistica Sinica, 2012, 22(4): 1479-1506. DOI: 10.5705/ss.2010.203. [18] JIANG Y L, LI H. Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors[J]. Journal of the Korean Statistical Society, 2014, 43(4): 531-543. DOI: 10.1016/j.jkss.2014.03.004. [19] ARELLANO M. Panel data econometrics[M]. Oxford:Oxford University Press, 2003.DOI: 10.1093/0199245282.001.0001. [20] HUNTER D R, LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2004, 58(1): 30-37. DOI: 10.1198/0003130042836. [21] HUNTER D R, LANGE K. Quantile regression via an MM algorithm[J]. Journal of Computational and Graphical Statistics, 2000, 9(1): 60-77. DOI: 10.1080/10618600.2000.10474866. [22] FEENSTRA R C, INKLAAR R, TIMMER M P. The next generation of the Penn world table[J]. American Economic Review, 2015, 105(10): 3150-3182. DOI: 10.1257/aer.20130954. |
| [1] | ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42. |
| [2] | XU Ping, ZHONG Simin, LI Binbin, XIONG Wenjun. Conditional Independence Screening in Sparse Ultra-high Dimensional Nonparametric Additive Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 100-107. |
| [3] | LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215. |
|