Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 10-22.doi: 10.16088/j.issn.1001-6600.2025022702

• Intelligent Transportation • Previous Articles     Next Articles

Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN

HUANG Yanguo*, XIAO Jie, WU Shuiqing   

  1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2025-02-27 Revised:2025-05-17 Online:2026-01-05 Published:2026-01-26

Abstract: Due to the complexity of traffic flow and the insufficient extraction of spatio-temporal features, it is difficult for D2STGNN to capture the dynamic changes of traffic networks, which limits the improvement of prediction accuracy. In this paper, a Bi-EMHGRU model combining an efficient multi-head self-attention mechanism (EMHSA) and a bidirectional gated recurrent unit (BiGRU) is proposed. This model captures the sequential dependencies of both forward and backward timings through BiGRU and dynamically allocates weights to each time step by using the multi-head self-attention mechanism to focus on key sequential features. Meanwhile, a multi-scale time feature extraction module is introduced, which enhances the modeling ability for short-term fluctuations and long-term trends and improves the modeling effect of complex spatio-temporal dynamics. The experimental results show that Bi-EMHGRU performs excellently on the PEMS04 and PEMS08 datasets. The root mean square error value has decreased by approximately 0.55~1.55, the mean absolute error has decreased by approximately 0.89~1.40, and the mean absolute percentage error has decreased by approximately 0.86~1.77 percentage points. It can still maintain stable prediction performance when the prediction step length increases and has strong generalization ability. Compared with the existing benchmark models, Bi-EMHGRU can capture the dynamic spatio-temporal features of traffic flow more effectively and significantly improves the prediction accuracy and robustness.

Key words: traffic flow prediction, multi-head self-attention, Bi-EMHGRU, dynamic spatio-temporal features, multi-scale temporal features

CLC Number:  U49
[1] 刘艺, 游克思, 孙培翔. 智慧城市道路体系架构与发展路径研究[J]. 城市交通, 2024, 22(5): 93-100. DOI: 10.13813/j.cn11-5141/u.2024.0029.
[2] 李玉莲. 基于数据驱动的城市道路交通状态预测研究[D]. 重庆: 重庆交通大学, 2021. DOI: 10.27671/d.cnki.gcjtc.2021.000132.
[3] BOX G E P, JENKINS G M, REINSEL G C, et al. Timeseries analysis: forecasting and control[M]. 5th ed. New York: Wiley, 2008.
[4] 张阳, 王梓良, 姚芳钰, 等.融合滞后极限学习机的IDBiLSTM短时交通流预测[J]. 重庆交通大学学报(自然科学版), 2024, 43(6): 39-46. DOI: 10.3969/j.issn.1674-0696.2024.06.06.
[5] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. DOI: 10.1038/323533a0.
[6] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
[7] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA: ACL, 2014: 1724-1734. DOI: 10.3115/v1/d14-1179.
[8] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].(2017-02-22)[2025-10-1]. https://arxiv.org/abs/1609.02907.DOI: 10.48550/arXiv.1609.02907.
[9] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings. 2005 IEEE International Joint Conference on Neural Networks,Piscataway,NJ:IEEE,2005: 729-734. DOI: 10.1109/ijcnn.2005.1555942.
[10] 夏英, 刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报, 2023, 58(2): 340-347. DOI: 10.3969/j.issn.0258-2724.20210526.
[11] 袁华, 陈泽濠. 基于时间卷积神经网络的短时交通流预测算法[J]. 华南理工大学学报(自然科学版), 2020, 48(11): 107-113, 122. DOI: 10.12141/j.issn.1000-565X.190276.
[12] 王博文, 王景升, 朱茵, 等. 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38(11): 126-133. DOI: 10.3969/j.issn.1002-0268.2021.11.015.
[13] 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773. DOI: 10.13328/j.cnki.jos.007018.
[14] 罗向龙, 郭凰, 廖聪, 等. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. DOI: 10.3778/j.issn.1002-8331.2011-0204.
[15] YU B,YIN H T,ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: IJCAI, 2017:3634-3640.DOI: 10.24963/ijcai.2018/505.
[16] LI Y G, YU R, SHAHABI C, et al.Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL].(2019-09-15)[2025-03-08]. http://wds.ac.cn/portal/summer2019/paper/13.pdf.
[17] SHAO Z Z, ZHANG Z, WEI W, et al. Decoupled dynamic spatial-temporal graph neural network for traffic forecasting[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 2733-2746. DOI: 10.14778/3551793.3551827.
[18] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. DOI: 10.1109/78.650093.
[19] 刘云翔, 梁智超. 一种高效的连续时序图注意力网络的交通预测模型[J]. 计算机工程, 2025, 51(4): 350-359. DOI: 10.19678/j.issn.1000-3428.0069059.
[20] 张伟, 朱凤华, 陈圆圆, 等. 基于注意力机制和分时图卷积的公交客流预测[J]. 模式识别与人工智能, 2021, 34(2): 167-175. DOI: 10.16451/j.cnki.issn1003-6059.202102008.
[21] 王小博, 张轩, 高张浩, 等. 基于边缘智能的高速公路交通流预测方法[J]. 计算机技术与发展, 2025, 35(4): 193-201. DOI: 10.20165/j.cnki.ISSN1673-629X.2025.0017.
[22] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Washington, DC:AAAI, 2019: 922-929. DOI: 10.1609/aaai.v33i01.3301922.
[23] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241. DOI: 10.1609/aaai.v34i01.5477.
[24] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California:IJCAI,2019:1907-1913. DOI: 10.24963/ijcai.2019/264.
[25] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. DOI: 10.1609/aaai.v34i01.5438.
[1] LIN Peiqun, HE Huohua, LIN Xukun. Multi-scale Prediction of Expressways' Arrival Volume of Large and Medium-sized Trucks Based on System Relevance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 15-26.
[2] XU Lun-hui, YOU Huang-yang. Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[7] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[8] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[9] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .
[10] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68 -79 .