Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 33-44.doi: 10.16088/j.issn.1001-6600.2025030701

• Intelligence Information Processing • Previous Articles     Next Articles

Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL

ZHANG Zhulu, LI Huaqiang*, LIU Yang, XU Lixiong   

  1. School of Electrical Engineering, Sichuan University, Chengdu Sichuan 610065, China
  • Received:2025-03-07 Revised:2025-06-20 Online:2026-01-05 Published:2026-01-26

Abstract: Non-intrusive load monitoring (NILM) facilitates the rational energy allocation and fine-grained management using real-time load data monitor and analysis. To improve load identification performance in NILM under conditions of limited labeled data, this paper presents a novel method based on Bi-LSTM feature fusion and fine-tuned few-shot learning (FT-FSL). First, weighted pixel voltage-current (V-I) image features and multidimensional time-frequency sequence features are fused using Bi-LSTM feature fusion method. Then, FT-FSL is employed to enable the load classification model to be trained with only a small number of labeled samples. Finally, the proposed method is evaluated on the PLAID dataset and compared with four mainstream FSL approaches (Matching Network, Prototypical Network, Relation Network, and MAML). Experimental results show that the proposed method achieves an accuracy of 92.46%, outperforming the comparison models by 12.21, 4.18, 5.90, and 9.04 percentage points, respectively. These results demonstrate the effectiveness of the proposed approach in identifying load types with limited labeled data.

Key words: non-intrusive load monitoring, load identification, few-shot learning, Bi-LSTM, fine-tuning

CLC Number:  TM714
[1] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39-51. DOI: 10.16088/j.issn.1001-6600.2023082702.
[2] 李云卿. 系统推进“十四五” 时期电力需求侧管理高质量发展[J]. 电力需求侧管理, 2021, 23(1): 1-3. DOI: 10.3969/j.issn.1009-1831.2021.01.001.
[3] GOPINATH R, KUMAR M, JOSHUA C P C, et al. Energy management using non-intrusive load monitoring techniques-State-of-the-art and future research directions[J]. Sustainable Cities and Society, 2020, 62: 102411. DOI: 10.1016/j.scs.2020.102411.
[4] 余贻鑫, 刘博, 栾文鹏. 非侵入式居民电力负荷监测与分解技术[J]. 南方电网技术, 2013, 7(4): 1-5. DOI: 10.13648/j.cnki.issn1674-0629.2013.04.004.
[5] ANGELIS G F, TIMPLALEXIS C, KRINIDIS S, et al. NILM applications: literature review of learning approaches, recent developments and challenges[J]. Energy and Buildings, 2022, 261: 111951. DOI: 10.1016/j.enbuild.2022.111951.
[6] YIN H, ZHOU K L, YANG S L. Non-intrusive load monitoring by load trajectory and multi-feature based on DCNN[J]. IEEE Transactions on Industrial Informatics, 2023, 19(10): 10388-10400. DOI: 10.1109/TII.2023.3240924.
[7] 韩林池, 高放, 赵子巍, 等. 基于多尺度卷积与Informer混合模型的非侵入式负荷监测方法[J]. 电力自动化设备, 2024, 44(3): 134-141. DOI: 10.16081/j.epae.202306017.
[8] LE TT H, HEO S, KIM H. Toward load identification based on the Hilbert transform and sequence to sequence long short-term memory[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3252-3264. DOI: 10.1109/TSG.2021.3066570.
[9] DU L, HE D W, HARLEY R G, et al. Electric load classification by binary voltage-current trajectory mapping[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 358-365. DOI: 10.1109/TSG.2015.2442225.
[10] DE BAETS L, RUYSSINCK J, DEVELDER C, et al. Appliance classification using VI trajectories and convolutional neural networks[J]. Energy and Buildings, 2018, 158: 32-36. DOI: 10.1016/j.enbuild.2017.09.087.
[11] 王守相, 郭陆阳, 陈海文, 等. 基于特征融合与深度学习的非侵入式负荷辨识算法[J]. 电力系统自动化, 2020, 44(9): 103-110. DOI: 10.7500/AEPS20190625010.
[12] CHEN T, QIN H Y, LI X S, et al. A non-intrusive load monitoring method based on feature fusion and SE-ResNet[J]. Electronics, 2023, 12(8): 1909. DOI: 10.3390/electronics12081909.
[13] 杨舒惠, 黎静华, 韦善阳. 基于图像分类网络的非侵入式负荷辨识算法的运算成本优化[J]. 电力自动化设备, 2024, 44(1): 141-146. DOI: 10.16081/j.epae.202303045.
[14] KASELIMI M, DOULAMIS N, VOULODIMOS A, et al. Context aware energy disaggregation using adaptive bidirectional LSTM models[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3054-3067. DOI: 10.1109/TSG.2020.2974347.
[15] RAFIQ H, SHI X H, ZHANG H X, et al. Generalizability improvement of deep learning-based non-intrusive load monitoring system using data augmentation[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3265-3277. DOI: 10.1109/TSG.2021.3082622.
[16] LIU Y Y, ZHONG L, QIU J, et al. Unsupervised domain adaptation for nonintrusive load monitoring via adversarial and joint adaptation network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 266-277. DOI: 10.1109/TII.2021.3065934.
[17] GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4367-4375. DOI: 10.1109/CVPR.2018.00459.
[18] CHEN C, LI K L, WEI W, et al. Hierarchical graph neural networks for few-shot learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 240-252. DOI: 10.1109/TCSVT.2021.3058098.
[19] 曾武, 毛国君. 多尺度特征聚合的小样本学习方法[J]. 计算机工程与应用, 2023, 59(15): 151-159. DOI: 10.3778/j.issn.1002-8331.2204-0278.
[20] HAN Y H, GAO Q, CHEN H Q, et al. A few-shot learning method for nonintrusive load monitoring with V-I trajectory features[J]. IEEE Sensors Journal, 2024, 24(7): 11867-11877. DOI: 10.1109/JSEN.2024.3365132.
[21] LUO Q Q, YU T, LAN C F, et al. A generalizable method for practical non-intrusive load monitoring via metric-based meta-learning[J]. IEEE Transactions on Smart Grid, 2024, 15(1): 1103-1115. DOI: 10.1109/TSG.2023.3263814.
[22] CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. (2020-01-12)[2025-05-08]. https://arxiv.org/abs/1904.04232. DOI: 10.48550/arXiv.1904.04232.
[23] MEDICO R, DE BAETS L, GAO J K, et al. A voltage and current measurement dataset for plug load appliance identification in households[J]. Scientific Data, 2020, 7: 49. DOI: 10.1038/s41597-020-0389-7.
[24] DE BAETS L, DHAENE T, DESCHRIJVER D, et al. VI-based appliance classification using aggregated power consumption data[C]//2018 IEEE International Conference on Smart Computing (SMARTCOMP).Piscataway,NJ:IEEE, 2018: 179-186. DOI: 10.1109/SMARTCOMP.2018.00089.
[25] ALSHAREEF S, MORSI W G. Application of wavelet-based ensemble tree classifier for non-intrusive load monitoring[C]//2015 IEEE Electrical Power and Energy Conference (EPEC).Piscataway,NJ:IEEE, 2015: 397-401. DOI: 10.1109/EPEC.2015.7379983.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[27] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. DOI: 10.1609/aaai.v35i12.17325.
[28] NIE W Z, YAN Y,SONG D, et al. Multi-modal feature fusion based on multi-layers LSTM for video emotion recognition[J]. Multimedia Tools and Applications, 2021, 80(11): 16205-16214. DOI: 10.1007/s11042-020-08796-8.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[9] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .
[10] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68 -79 .