Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 23-32.doi: 10.16088/j.issn.1001-6600.2025010101
• Intelligent Transportation • Previous Articles Next Articles
LIU Zhihao1,2, LI Zili1,2*, SU Min1,2
| [1] 宋昀农, 马蔚蔚, 沈健, 等. 电动车驾驶员佩戴头盔与伤亡关系的分析研究[J]. 中国城乡企业卫生, 2020, 35(12): 7-9. DOI: 10.16286/j.1003-5052.2020.12.003. [2] 樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529. DOI: 10.13203/j.whugis20170177. [3] BOUHAYANE A, CHAROUH Z, GHOGHO M, et al. A swin transformer-based approach for motorcycle helmet detection[J]. IEEE Access, 2023, 11: 74410-74419. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81. [5] MERCADO REYNA J, LUNA-GARCIA H, ESPINO-SALINAS C H, et al. Detection of helmet use in motorcycle drivers using convolutional neural network[J]. Applied Sciences, 2023, 13(10): 5882. DOI: 10.3390/app13105882. [6] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308. [7] JIA W, XU S Q, LIANG Z, et al. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021, 15(14): 3623-3637. DOI: 10.1049/ipr2.12295. [8] ZHOU S Y, PENG Z Y, ZHANG H L, et al. Helmet-YOLO: a new method for real-time, high-precision helmet wearing detection[J]. IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3443146. [9] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.Piscataway,NJ: IEEE, 2001: 1-9. DOI: 10.1109/CVPR.2001.990517. [10] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94. [11] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169. [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2. [14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-03-20]. https://arxiv.org/abs/1804.02767v1. [15] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2025-03-20]. 10934. https://arxiv.org/abs/2004.10934v1. [16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ: IEEE, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Piscataway,NJ: IEEE, 2017: 2999-3007. DOI: 10.1109/ICCV.2017.324. [18] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2019: 3007-3016. DOI: 10.1109/ICCV.2019.00310. [19] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-08-08)[2025-03-20]. https://arxiv.org/pdf/2301.10051. [20] YUAN L, HOU Q B, JIANG Z H, et al. VOLO: vision outlooker for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6575-6586. DOI: 10.1109/TPAMI.2022.3206108. [21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ: IEEE, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350. [22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. |
| [1] | TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1-9. |
| [2] | HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56-67. |
| [3] | SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68-79. |
| [4] | WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91. |
| [5] | LI Fengwei, TAN Yumei, SONG Shuxiang, XIA Haiying. Occlusion-Aware Facial Expression Recognition Based on Attention Guidance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 104-113. |
| [6] | LIU Tinghan, LIANG Yan, HUANG Pengsheng, BI Jinjie, HUANG Shoulin, LI Tinghui. Facial Acne Detection for Small Object Based on Improved YOLOv8s [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 114-129. |
| [7] | TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14. |
| [8] | HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68. |
| [9] | SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96. |
| [10] | LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22. |
| [11] | LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84-97. |
| [12] | GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69. |
| [13] | SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82. |
| [14] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [15] | DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106. |
|