Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 23-32.doi: 10.16088/j.issn.1001-6600.2025010101

• Intelligent Transportation • Previous Articles     Next Articles

YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance

LIU Zhihao1,2, LI Zili1,2*, SU Min1,2   

  1. 1. Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2025-01-01 Revised:2025-03-03 Online:2026-01-05 Published:2026-01-26

Abstract: Nowadays, the safety of electric vehicle (EV) riders has now become a focal issue in society, and wearing safety helmets was proven to be an effective way to reduce injury in accidents. In order to enhance road traffic safety and improve regulatory efficiency, an UAV-assisted helmet intelligent detection algorithm based on intelligent communication and deep learning is proposed. By combining intelligent communication technology, UAVs can transmit video data in real time and analyze it quickly by intelligent algorithms. First, an improved Outlook-C2f architecture was proposed to enhance the algorithm’s focus on the small targets; Second, CARAFE is proposed to used in the Feature Pyramid Network (FPN) to dynamically generate weights for precise feature reconstruction and improved spatial resolution; Finally, WIoU (Wise Intersection over Union) was integrated to improve the accuracy of positional information. The experimental results show that, based on the road real-time dataset, the improved YOLOv8 algorithm achieves 96.7% mAP and 26.91 FPS, which are significantly better than the traditional method, demonstrating its potential for application in complex traffic scenarios.

Key words: helmet detection, intelligent communication, YOLO, attention mechanism, UAV aerial photography

CLC Number:  U492.8
[1] 宋昀农, 马蔚蔚, 沈健, 等. 电动车驾驶员佩戴头盔与伤亡关系的分析研究[J]. 中国城乡企业卫生, 2020, 35(12): 7-9. DOI: 10.16286/j.1003-5052.2020.12.003.
[2] 樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529. DOI: 10.13203/j.whugis20170177.
[3] BOUHAYANE A, CHAROUH Z, GHOGHO M, et al. A swin transformer-based approach for motorcycle helmet detection[J]. IEEE Access, 2023, 11: 74410-74419.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[5] MERCADO REYNA J, LUNA-GARCIA H, ESPINO-SALINAS C H, et al. Detection of helmet use in motorcycle drivers using convolutional neural network[J]. Applied Sciences, 2023, 13(10): 5882. DOI: 10.3390/app13105882.
[6] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308.
[7] JIA W, XU S Q, LIANG Z, et al. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021, 15(14): 3623-3637. DOI: 10.1049/ipr2.12295.
[8] ZHOU S Y, PENG Z Y, ZHANG H L, et al. Helmet-YOLO: a new method for real-time, high-precision helmet wearing detection[J]. IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3443146.
[9] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.Piscataway,NJ: IEEE, 2001: 1-9. DOI: 10.1109/CVPR.2001.990517.
[10] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94.
[11] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-03-20]. https://arxiv.org/abs/1804.02767v1.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2025-03-20]. 10934. https://arxiv.org/abs/2004.10934v1.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ: IEEE, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Piscataway,NJ: IEEE, 2017: 2999-3007. DOI: 10.1109/ICCV.2017.324.
[18] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2019: 3007-3016. DOI: 10.1109/ICCV.2019.00310.
[19] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-08-08)[2025-03-20]. https://arxiv.org/pdf/2301.10051.
[20] YUAN L, HOU Q B, JIANG Z H, et al. VOLO: vision outlooker for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6575-6586. DOI: 10.1109/TPAMI.2022.3206108.
[21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ: IEEE, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1-9.
[2] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56-67.
[3] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68-79.
[4] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[5] LI Fengwei, TAN Yumei, SONG Shuxiang, XIA Haiying. Occlusion-Aware Facial Expression Recognition Based on Attention Guidance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 104-113.
[6] LIU Tinghan, LIANG Yan, HUANG Pengsheng, BI Jinjie, HUANG Shoulin, LI Tinghui. Facial Acne Detection for Small Object Based on Improved YOLOv8s [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 114-129.
[7] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14.
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68.
[9] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[10] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22.
[11] LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84-97.
[12] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[13] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[14] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[15] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[8] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[9] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .
[10] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68 -79 .