Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 95-106.doi: 10.16088/j.issn.1001-6600.2024051502

• Intelligence Information Processing • Previous Articles     Next Articles

HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel

DAI Linhua, LI Yuansong*, SHI Rui, HE Zhongliang, LI Lei   

  1. School of Computer Science and Engineering, Sichuan University of Science & Engineering, Yibin Sichuan 643002, China
  • Received:2024-05-15 Revised:2024-07-01 Online:2025-03-05 Published:2025-04-02

Abstract: In response to the high computational complexity, low detection accuracy, and the issues of missed detection and false alarms in the current strip steel surface defect detection algorithm, a lightweight strip steel surface defect detection model, HSED-YOLO, is proposed. Initially, the original YOLOv8n backbone network is replaced with the improved HGNetV2, reducing the redundancy in feature map computation and thereby decreasing the number of the model’s parameters. Subsequently, to further reduce the model’s complexity, a Slim-Neck structured design is introduced into the model’s bottleneck network structure. Concurrently, an EMA attention mechanism is introduced during the feature fusion stage to enhance the model’s feature extraction capability. To further improve the model’s detection accuracy, a DIoU loss function is designed. Extensive experiments are conducted on the strip steel defect dataset. The number of improved model’s parameters and computational load are 2.1×106 and 6.1×109 FLOPs, respectively, which are only 70% and 75.3% of those of the baseline model. Moreover, the average accuracy is improved by 2% compared with the baseline model. These results demonstrate the effectiveness of the improved network.

Key words: defect detection, strip steel, YOLOv8, attention mechanism, loss function, image recognition

CLC Number:  TP391.41
[1] WANG Z P, WANG J, CHEN S. Fault location of strip steel surface quality defects on hot-rolling production line based on information fusion of historical cases and process data[J]. IEEE Access, 2020, 8: 171240-171251. DOI: 10.1109/ACCESS.2020.3024582.
[2] 冯毅雄, 赵彬, 郑浩, 等. 集成迁移学习的轴件表面缺陷实时检测[J]. 计算机集成制造系统, 2019, 25(12): 3199-3208. DOI: 10.13196/j.cims.2019.12.021.
[3] SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285(Part B): 858-864. DOI: 10.1016/j.apsusc.2013.09.002.
[4] 李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述[J]. 自动化学报, 2020, 46(11): 2319-2336. DOI: 10.16383/j.aas.c180538.
[5] SI B L, YASENGJIANG M, WU H W. Deep learning-based defect detection for hot-rolled strip steel[J]. Journal of Physics: Conference Series, 2022, 2246(1): 012073. DOI: 10.1088/1742-6596/2246/1/012073.
[6] 翁玉尚, 肖金球, 夏禹. 改进Mask R-CNN算法的带钢表面缺陷检测[J]. 计算机工程与应用, 2021, 57(19): 235-242. DOI: 10.3778/j.issn.1002-8331.2010-0446.
[7] TANG M, LI Y Y, YAO W, et al. A strip steel surface defect detection method based on attention mechanism and multi-scale maxpooling[J]. Measurement Science and Technology, 2021, 32(11): 115401. DOI: 10.1088/1361-6501/ac0ca8.
[8] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot multibox detector[C] // Computer Vision-ECCV 2016: LNCS Volume 9905. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[10] ZHAO H, WAN F, LEI G B, et al. LSD-YOLOv5: a steel strip surface defect detection algorithm based on lightweight network and enhanced feature fusion mode[J]. Sensors, 2023, 23(14): 6558. DOI: 10.3390/s23146558.
[11] 王春梅, 刘欢. YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. DOI: 10.3778/j.issn.1673-9418.2308060.
[12] LI Y S, XU S B, ZHU Z F, et al. EFC-YOLO: an efficient surface-defect-detection algorithm for steel strips[J]. Sensors, 2023, 23(17): 7619. DOI: 10.3390/s23177619.
[13] WANG G Q, ZHANG C Z, CHEN M S, et al. A high-accuracy and lightweight detector based on a graph convolution network for strip surface defect detection[J]. Advanced Engineering Informatics, 2024, 59: 102280. DOI: 10.1016/J.AEI.2023.102280.
[14] 张阳婷, 黄德启, 王东伟,等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13. DOI: 10.3778/j.issn.1002-8331.2305-0310.
[15] ZHAO Y, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. (2024-04-03)[2024-05-15]. https://arxiv.org/abs/2304.08069. DOI: 10.48550/arXiv.2304.08069.
[16] HAN K,WANG Y H,TIAN Q,et al. GhostNet: more features from cheap operations[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165.
[17] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21: 62. DOI: 10.1007/s11554-024-01436-6.
[18] QIN X Y, LI N, WENG C, et al. Simple attention module based speaker verification with iterative noisy label detection[C] // ICASSP 2022: 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2022: 6722-6726. DOI: 10.1109/ICASSP43922.2022.9746294.
[19] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention:rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352. DOI: 10.1016/J.ESWA.2023.121352.
[20] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C] // ICASSP 2023: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2023: 1-5. DOI: 10.1109/ICASSP49357.2023.10096516.
[21] 王博韬. 基于YOLOv4的车辆目标检测改进算法[J]. 电脑编程技巧与维护, 2022(9): 31-33. DOI: 10.16184/j.cnki.comprg.2022.09.012.
[22] 田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测[J]. 计算机系统应用, 2022, 31(3): 159-168. DOI: 10.15888/j.cnki.csa.008359.
[23] 杜孟新, 毕玉, 杜鹏昊. 基于卷积神经网络的带钢表面缺陷图像检测算法[J]. 火力与指挥控制, 2022, 47(8): 132-135. DOI: 10.3969/j.issn.1002-0640.2022.08.021.
[24] 胡海涛, 杜昊晨, 王素琴, 等. 改进YOLOX的药品泡罩铝箔表面缺陷检测方法[J]. 图学学报, 2022, 43(5): 803-814. DOI: 10.11996/JG.j.2095-302X.2022050803.
[25] 杨博. 基于深度学习的高铁接触网4C故障检测软件设计与实现[D]. 武汉: 华中科技大学, 2019. DOI: 10.27157/d.cnki.ghzku.2019.003062.
[26] ZHANG X R, WANG Y L, FANG H S. Steel surface defect detection algorithm based on ESI-YOLOv8[J]. Materials Research Express, 2024, 11(5): 056509. DOI: 10.1088/2053-1591/ad46ec.
[1] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[2] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[3] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[4] LIU Junjie, MA Kai, HUANG Zehua, TIAN Miao, QIU Qinjun , TAO Liufeng, XIE Zhong. Geological Structure Recognition Based on Transfer Learning and Channel Prior Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 107-120.
[5] YU Kuai, SONG Baogui, SHAO Pan, YU Ao. Hierarchical-scale Interaction-based U-Net for Remote Sensing Image Building Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 121-132.
[6] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[7] YU Xuesong, XU Bao. Bayes Estimations of Burr Distribution under the Weighted p, q Symmetric Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 186-193.
[8] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[9] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[10] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[11] XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119.
[12] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80-91.
[13] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36.
[14] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[15] DENG Xizhen, JIANG Ming, CEN Mingcan, LUO Yuling. Ransomware Classification Based on Entropy Image Static Analysis Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 91-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!