Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 107-120.doi: 10.16088/j.issn.1001-6600.2024010902

• Intelligence Information Processing • Previous Articles     Next Articles

Geological Structure Recognition Based on Transfer Learning and Channel Prior Attention Mechanism

LIU Junjie1,2, MA Kai1,2, HUANG Zehua1,2, TIAN Miao3, QIU Qinjun4,5* , TAO Liufeng4,5, XIE Zhong4,5   

  1. 1. Hubei Key Laboratory of Intelligent Visual Monitoring for Hydropower Engineering (China Three Gorges University), Yichang Hubei 443002, China;
    2. College of Computer and Information Technology, China Three Gorges University, Yichang Hubei 443002, China;
    3. Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences), Wuhan Hubei 430074, China;
    4. School of Computer Science, China University of Geosciences, Wuhan Hubei 430074, China;
    5. National and Local Joint Engineering Laboratory of Geographic Information Systems (China University of Geosciences), Wuhan Hubei 430074, China
  • Received:2024-01-09 Revised:2024-03-27 Online:2025-03-05 Published:2025-04-02

Abstract: To address the issue of poor identification resulting from the complex geological background and diverse symbol representations in plane geological drawings, a geological structure recognition model, named MsAttenEfficientNet, is proposed based on transfer learning and the Channel Prior Convolution Attention (CPCA) mechanism. In this model, EfficientNet is utilized as the backbone network architecture, and the Squeeze and Excitation Net (SENet) in the MBConv feature extraction module of EfficientNet are replaced by the CPCA module. This replacement enables the dynamic allocation of channel and spatial attention weights, allowing the model to more accurately capture important regions and spatial structures in the images. Subsequently, improvements are made to the top prediction module by introducing the Swish activation function and Dropout layers to enhance the model’s generalization performance. Finally, the Adam optimization algorithm is employed to improve the convergence speed of the network, and transfer learning is utilized to achieve feature parameter sharing. Experimental results, obtained from training and testing on the geological structure dataset GeoStr18, demonstrate that the MsAttenEfficientNet model achieves a precision of 96.92%, a recall of 96.89%, and an F1 score of 96.90% in geological structure recognition, outperforming mainstream classification models such as ResNet50, ShuffleNetV2, and DenseNet121, thus effectively applicable for geological structure recognition.

Key words: image recognition, geological structure, EfficientNet network, CPCA, transfer learning

CLC Number:  TP183; TP391.41
[1] GENG Z, WANG Y F. Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data[J]. Engineering Geology, 2020, 279: 105857. DOI: 10.1016/j.enggeo.2020.105857.
[2] BULKAN S, VANNUCCHI P, GASPERINI L, et al. Modelling tectonic deformation along the North-Anatolian Fault in the Sea of Marmara[J]. Tectonophysics, 2020, 794: 228612. DOI: 10.1016/j.tecto.2020.228612.
[3] 王淑鹏. 野外地质露头图像构造自动识别方法研究[D]. 北京: 中国地质大学(北京), 2021. DOI: 10.27493/d.cnki.gzdzy.2021.000647.
[4] 李盼盼, 陈国旭, 刘盛东, 等. 基于高分卫星影像的断层构造识别及三维地质建模应用[J]. 合肥工业大学学报(自然科学版), 2020, 43(5): 680-687. DOI: 10.3969/j.issn.1003-5060.2020.05.018.
[5] VOLLGGER S A, CRUDEN A R. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia[J]. Journal of Structural Geology, 2016, 85: 168-187. DOI: 10.1016/j.jsg.2016.02.012.
[6] FARAHBAKHSH E, CHANDRA R, OLIEROOK H K H, et al. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data[J]. International Journal of Remote Sensing, 2020, 41(5): 1760-1787. DOI: 10.1080/01431161.2019.1674462.
[7] 李宗仁, 张焜, 李晓民, 等. 遥感线性构造特征分析与找矿预测[J]. 遥感信息, 2016, 31(3): 115-121. DOI: 10.3969/j.issn.1000-3177.2016.03.018.
[8] 马艺璇, 李慧莉, 刘坤岩, 等. 基于分频相干体的蚂蚁追踪技术在塔河油田断裂刻画中的应用[J]. 石油物探, 2020, 59(2) : 258-266. DOI: 10.3969/j.issn.1000-1441.2020.02.012.
[9] 王怀秀, 冯思怡, 刘最亮. 基于改进随机森林算法的地质构造识别模型[J]. 煤炭科学技术, 2023, 51(4): 149-156. DOI: 10.13199/j.cnki.cst.2021-0754.
[10] 谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302. DOI: 10.11720/wtyht.2021.1208.
[11] 杨楚龙, 王怀秀, 刘最亮. 基于改进XGBoost的地震多属性地质构造识别方法[J]. 科学技术与工程, 2023, 23(29): 12442-12450. DOI: 10.12404/j.issn.1671-1815.2023.23.29.12442.
[12] 孙振宇, 彭苏萍, 邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报, 2017, 42(11): 2945-2952. DOI: 10.13225/j.cnki.jccs.2017.0972.
[13] 张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397, 410. DOI: 10.13976/j.cnki.xk.2018.8091.
[14] ZHANG Y, WANG G, LI M C, et al. Automated classification analysis of geological structures based on images data and deep learning model[J]. Applied Sciences, 2018, 8(12): 2493. DOI: 10.3390/app8122493.
[15] 彭弘杰, 孙宇鹏, 赵禹深, 等. 基于Faster R-CNN对地质图进行褶皱自动识别[C] // 2021年中国地球科学联合学术年会论文集(十一): 专题三十一 深部矿产资源探测技术与应用、专题三十二 航空地球物理勘查技术与应用、专题三十三 煤炭资源与矿山地球物理. 北京: 北京伯通电子出版社, 2021: 1948-1950. DOI: 10.26914/c.cnkihy.2021.072331.
[16] 张黎, 吕芬, 尚凯, 等. 基于全卷积神经网络的走滑断裂识别技术: 以托甫台地区为例[J]. 长江大学学报(自然科学版), 2022, 19(4): 38-48. DOI: 10.16772/j.cnki.1673-1409.20220426.001.
[17] CUNHA A, POCHET A, LOPES H, et al. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data[J]. Computers & Geosciences, 2020, 135: 104344. DOI: 10.1016/j.cageo.2019.104344.
[18] 李辉. 基于改进AlexNet模型的断层识别方法[J]. 油气地质与采收率, 2022, 29(1): 107-112. DOI: 10.13673/j.cnki.cn37-1359/te.2022.01.013.
[19] 席英杰, 李克文, 徐延辉, 等. 一种用于地震断层图像识别的SPD-UNet模型[J]. 计算机工程, 2021, 47(12): 249-255. DOI: 10.19678/j.issn.1000-3428.0059327.
[20] 芦凤明, 孟瑞刚, 张军华, 等. UNet++和迁移学习相结合的复杂断裂识别方法研究[J]. 地球物理学进展, 2022, 37(3): 1100-1111. DOI: 10.6038/pg2022FF0122.
[21] TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C] // Proceedings of the 36th International Conference on Machine Learning. Long Beach, CA: PMLR, 2019: 6105-6114.
[22] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[23] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[EB/OL]. (2017-06-14)[2024-01-09]. https://arxiv.org/abs/1605.07146. DOI: 10.48550/arXiv.1605.07146.
[24] HUANG Y P, CHENG Y L, BAPNA A, et al. GPipe: efficient training of giant neural networks using pipeline parallelism[C] // Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Red Hook, NY: Curran Associates Inc., 2019: 103-112.
[25] 唐浪, 李慧霞, 颜晨倩, 等. 深度神经网络结构搜索综述[J]. 中国图象图形学报, 2021, 26(2): 245-264. DOI: 10.11834/jig.200202.
[26] DAI Z H, LIU H X, LE Q V, et al. CoAtNet: marrying convolution and attention for all data sizes[C] // Advances in Neural Information Processing Systems 34 (NeurIPS 2021). Red Hook, NY: Curran Associates Inc., 2021: 3965-3977.
[27] HUANG H J, CHEN Z G, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[EB/OL]. (2023-06-08)[2024-01-09]. https://arxiv.org/abs/2306.05196. DOI: 10.48550/arXiv.2306.05196.
[28] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11531-11539. DOI: 10.1109/CVPR42600.2020.01155.
[29] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] // Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer Nature Switzerland AG, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[30] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C] // Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates Inc., 2018: 2488-2498.
[31] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. (2017-10-27)[2024-01-09]. https://arxiv.org/abs/1710.05941. DOI: 10.48550/arXiv.1710.05941.
[32] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, MA: MIT press, 2016.
[33] CHEN S W, SHIVAKUMAR S S, DCUNHA S, et al. Counting apples and oranges with deep learning: a data-driven approach[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 781-788. DOI: 10.1109/LRA.2017.2651944.
[34] KAMILARIS A, PRENAFETA-BOLDÚ F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. DOI: 10.1016/j.compag.2018.02.016.
[35] LONG M S, CAO Y, CAO Z J, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071-3085. DOI: 10.1109/TPAMI.2018. 2868685.
[36] ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. DOI: 10.1109/JPROC.2020.3004555.
[37] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2024-01-09]. https://arxiv.org/abs/1409.1556. DOI: 10.48550/arXiv.1409.1556.
[38] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI: 10.1109/ICCV.2019. 00140.
[39] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5987-5995. DOI: 10.1109/CVPR.2017.634.
[40] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C] //Computer Vision-ECCV 2018: LNCS Volume 11218. Cham: Springer Nature Switzerland AG, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8.
[41] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243.
[42] XU J, PAN Y, PAN X L, et al. RegNet: self-regulated network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9562-9567. DOI: 10.1109/tnnls.2022.3158966.
[43] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2022-03-04)[2024-01-09]. https://arxiv.org/abs/2110.02178. DOI: 10.48550/arXiv.2110.02178.
[44] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C] // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167.
[1] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[2] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[3] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[4] NIU Xuede, GAO Bingpeng, REN Rongrong, XU Mingming. Crop Pestsand Diseases Identification and Android Application Based on Lightweight CNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 59-68.
[5] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46.
[6] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104-114.
[7] CHEN Jin, LUO Xiao-shu. Extraction and Recognition of Cell Image Feature Basedon Wavelet Transform and Invasive Weed Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!