Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 83-96.doi: 10.16088/j.issn.1001-6600.2024072303

• Intelligence Information Processing • Previous Articles     Next Articles

Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification

SHI Tianyi, NAN Xinyuan*, GUO Xiangyu, ZHAO Pu, CAI Xin   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-07-23 Revised:2024-12-23 Online:2025-07-05 Published:2025-07-14

Abstract: Aiming at the problems of poor accuracy of traditional apple leaf disease classification methods, an apple leaf classification algorithm CALDNet based on improved ConvNeXt is proposed. 3223 Network is designed to adjust the structure of the model, while jump connection and position coding are introduced to enhance the model’s ability to capture the space and to improve the stability of the training process, and Spatial Pyramid Pooling (SPP) is used to capture spatial features on different scales and enhance the model’s ability to adapt to large and small lesions; on the basis of ConvNeXtblock, G-ConvNeXtblock is designed to improve the depth convolution, and a Gabor filter is introduced as a convolution kernel to better capture texture information in the image. In order to improve the model’s ability to recognize a small range of apple leaf disease recognition ability, an enhanced channel and attention mechanism (enhanced CBAM) is designed. In the experiments, seven common leaf diseases (black-star disease, black-rot, brown-spot, mosaic disease, healthy, rust, gray-spot) are chosed as the main research subjects, and the experimental results by using the improved algorithm and other mainstream algorithms are compared. The experimental results show that the CALDNet model recognizes the leaf disease model with the precision rate, recall rate, and F1 value of 97.58%, 97.54%, and 97.54%, respectively, compared with the original ConvNeXt model, which increased by 4.63,4.56 and 4.60 percentage points, solving the problems of poor precision of traditional apple leaf disease classification.

Key words: apple leaf disease, ConvNeXt, CNN, attention mechanism, deep learning

CLC Number:  TP391.41
[1] 胡清玉, 胡同乐, 王亚南, 等. 中国苹果病害发生与分布现状调查[J]. 植物保护, 2016,42(1): 175-179. DOI: 10.3969/j.issn.0529-1542.2016.01.032.
[2] 徐艳蕾, 孔朔琳, 陈清源, 等. 基于Transformer的强泛化苹果叶片病害识别模型[J]. 农业工程学报, 2022, 38(16): 198-206. DOI: 10.11975/j.issn.1002-6819.2022.16.022.
[3] 刘斌, 贾润昌, 朱先语, 等. 面向移动端的苹果叶部病虫害轻量级识别模型[J]. 农业工程学报, 2022, 38(6): 130-139. DOI: 10.11975/j.issn.1002-6819.2022.06.015.
[4] 姜红花, 杨祥海, 丁睿柔, 等. 基于改进ResNet18的苹果叶部病害多分类算法研究[J]. 农业机械学报, 2023, 54(4): 295-303. DOI: 10.6041/j.issn.1000-1298.2023.04.030.
[5] LV M, SU W H. YOLOV5-CBAM-C3TR: an optimized model based on transformer module and attention mechanism for apple leaf disease detection[J]. Frontiers in Plant Science, 2024, 14: 1323301. DOI: 10.3389/fpls.2023.1323301.
[6] CHEN X L, XING X Z, ZHANG Y Z, et al. MSCR-FuResNet: a three-residual network fusion model based on multi-scale feature extraction and enhanced channel spatial features for close-range apple leaf diseases classification under optimal conditions[J]. Horticulturae, 2024, 10(9): 953. DOI: 10.3390/horticulturae10090953.
[7] 李大湘, 曾小通, 刘颖. 耦合全局与局部特征的苹果叶部病害识别模型[J]. 农业工程学报, 2022, 38(16): 207-214. DOI: 10.11975/j.issn.1002-6819.2022.16.023.
[8] 鲍文霞, 吴刚, 胡根生, 等. 基于改进卷积神经网络的苹果叶部病害识别[J]. 安徽大学学报(自然科学版), 2021,45(1): 53-59. DOI: 10.3969/j.issn.1000-2162.2021.01.008.
[9] 于雪莹, 高继勇, 王首程, 等. 基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J]. 中国农机化学报, 2022,43(6): 166-174. DOI: 10.13733/j.jcam.issn.2095-5553.2022.06.022.
[10] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167.
[11] GAO Y X, CAO Z Z, CAI W W, et al. Apple leaf disease identification in complex background based on BAM-Net[J]. Agronomy, 2023, 13(5): 1240. DOI: 10.3390/agronomy13051240.
[12] LI X P, LI S Q. Transformer help CNN see better: a lightweight hybrid apple disease identification model based on transformers[J]. Agriculture, 2022, 12(6): 884. DOI: 10.3390/agriculture12060884.
[13] LU J W, LU B B, MA W L, et al. EAIS-Former: an efficient and accurate image segmentation method for fruit leaf diseases[J]. Computers and Electronics in Agriculture, 2024, 218: 108739. DOI: 10.1016/j.compag.2024.108739.
[14] 徐红明, 王兴华, 方诚, 等. 基于旋转不变性的高分辨率遥感影像船舶检测[J]. 中国航海, 2024,47(2): 120-127. DOI: 10.3969/j.issn.1000-4653.2024.02.016.
[15] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[16] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[J]. Proceedings of Machine Learning Research, 2021, 139: 11863-11874.
[17] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[18] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350.
[19] QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 763-772. DOI: 10.1109/ICCV48922.2021.00082.
[20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/cvpr.2016.90.
[21] TAN M X, LE Q. EfficientNetV2: smaller models and faster training[J]. Proceedings of Machine Learning Research, 2021, 139: 10096-10106.
[22] IANDOLAF, MOSKEWICZ M, KARAYEV S, et al. DenseNet: implementing efficient ConvNet descriptor pyramids[EB/OL]. (2014-04-07)[2024-07-23]. https://doi.org/10.48550/arXiv.1404.1869. DOI: 10.48550/arXiv.1404.1869.
[23] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Los Alamitos, CA: IEEE Computer Society, 2020: 1571-1580. DOI: 10.1109/CVPRW50498.2020.00203.
[24] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5987-5995. DOI: 10.1109/CVPR.2017.634.
[25] TROCKMAN A, KOLTER J Z. Patches are all you need?[EB/OL]. (2022-01-24)[2024-07-23]. https://arxiv.org/abs/2201.09792. DOI: 10.48550/arXiv.2201.09792.
[26] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]// International Conference on Learning Representations 2021. Red Hook: Curran Associates, Inc., 2021: 1-21.
[27] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 9992-10002. DOI: 10.1109/ICCV48922.2021.00986.
[1] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14.
[2] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23.
[3] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68.
[4] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22.
[5] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[6] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[7] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[8] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[9] YU Kuai, SONG Baogui, SHAO Pan, YU Ao. Hierarchical-scale Interaction-based U-Net for Remote Sensing Image Building Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 121-132.
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[11] HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137.
[12] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[13] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[14] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[15] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .