Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 12-22.doi: 10.16088/j.issn.1001-6600.2024092804
• CCIR2024 • Previous Articles Next Articles
LU Zhanyue1,2,3, CHEN Yanping1,2,3*, YANG Weizhe1,2,3, HUANG Ruizhang1,2,3, QIN Yongbin1,2,3
| [1] 谢德鹏, 常青. 关系抽取综述[J]. 计算机应用研究, 2020, 37(7): 1921-1924, 1930. DOI: 10.19734/j.issn.1001-3695.2018.12.0923. [2]黄勋, 游宏梁, 于洋. 关系抽取技术研究综述[J]. 现代图书情报技术, 2013(11): 30-39. DOI: 10.11925/infotech.1003-3513.2013.11.05. [3]DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [4]LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2024-09-28]. https://arxiv.org/abs/1907.11692. DOI: 10.48550/arXiv.1907.11692. [5]车万翔, 刘挺, 李生. 实体关系自动抽取[J]. 中文信息学报, 2005, 19(2): 1-6. DOI: 10.3969/j.issn.1003-0077.2005.02.001. [6]SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 2895-2905. DOI: 10.18653/v1/P19-1279. [7]ZHOU W X, CHEN M H. An improved baseline for sentence-level relation extraction[C]// Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 161-168. DOI: 10.18653/v1/2022.aacl-short.21. [8]WU S C, HE Y F. Enriching pre-trained language model with entity information for relation classification[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: Association for Computing Machinery, 2019: 2361-2364. DOI: 10.1145/3357384.3358119. [9]BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 1877-1901. [10]HAN X, ZHAO W L, DING N, et al. PTR: prompt tuning with rules for text classification[J]. AI Open, 2022, 3: 182-192. DOI: 10.1016/j.aiopen.2022.11.003. [11]SCHICK T, SCHÜTZE H. It’s not just size that matters: small language models are also few-shot learners[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2339-2352. DOI: 10.18653/v1/2021.naacl-main.185. [12]CHEN X, ZHANG N Y, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction[C]// Proceedings of the ACM Web Conference 2022. New York: Association for Computing Machinery, 2022: 2778-2788. DOI: 10.1145/3485447.3511998. [13]闫雄, 段跃兴, 张泽华. 采用自注意力机制和CNN融合的实体关系抽取[J]. 计算机工程与科学, 2020, 42(11): 2059-2066. DOI: 10.3969/j.issn.1007-130X.2020.11.019. [14]宋睿, 陈鑫, 洪宇, 等. 基于卷积循环神经网络的关系抽取[J]. 中文信息学报, 2019, 33(10): 64-72. DOI: 10.3969/j.issn.1003-0077.2019.10.008. [15]MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016:1105-1116. DOI: 10.18653/v1/P16-1105. [16]冯建周, 宋沙沙, 王元卓, 等. 基于改进注意力机制的实体关系抽取方法[J]. 电子学报, 2019, 47(8): 1692-1700. DOI: 10.3969/j.issn.1003-0077.2019.10.008. [17]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2023-08-02)[2024-09-28]. https://arxiv.org/abs/1706.03762. DOI: 10.48550/arXiv.1706.03762. [18]阳小华, 张硕望, 欧阳纯萍. 中文关系抽取技术研究[J]. 南华大学学报(自然科学版), 2018, 32(1): 66-72. DOI: 10.3969/j.issn.1673-0062.2018.01.013. [19]武小平, 张强, 赵芳, 等. 基于BERT的心血管医疗指南实体关系抽取方法[J]. 计算机应用, 2021, 41(1): 145-149. DOI: 10.11772/j.issn.1001-9081.2020061008. [20]CHEN Y P, WANG K, YANG W Z, et al. A multi-channel deep neural network for relation extraction[J]. IEEE Access, 2020, 8: 13195-13203. DOI: 10.1109/ACCESS.2020.2966303. [21]ZHAO K, XU H, CHENG Y, et al. Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J]. Knowledge-Based Systems, 2021, 219: 106888. DOI: 10.1016/j.knosys.2021.106888. [22]LI J C, KATSIS Y, BALDWIN T, et al. SPOT: knowledge-enhanced language representations for information extraction[C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Stroudsburg, PA: Association for Computational Linguistics, 2022: 1124-1134. DOI: 10.1145/3511808.3557459. [23]PETERS M E, NEUMANN M, LOGAN R, et al. Knowledge enhanced contextual Word representations[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: Association for Computational Linguistics, 2019: 43-54. DOI: 10.18653/v1/D19-1005. [24]文坤建, 陈艳平, 黄瑞章, 等. 基于提示学习的生物医学关系抽取方法[J]. 计算机科学, 2023, 50(10): 223-229. DOI: 10.11896/jsjkx.220900108. [25]魏超, 陈艳平, 王凯, 等. 基于掩码提示与门控记忆网络校准的关系抽取方法[J]. 计算机应用, 2024, 44(6): 1713-1719. DOI: 10.11772/j.issn.1001-9081.2023060818. [26]HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 task 8: multi-way classification of semantic relations between pairs of nominals[C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA: Association for Computational Linguistics, 2010: 33-38. [27]LUAN Y, HE L H, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 3219-3232. DOI: 10.18653/v1/D18-1360. [28]XU J J, WEN J, SUN X, et al. A discourse-level named entity recognition and relation extraction dataset for Chinese literature text[EB/OL]. (2019-06-11)[2024-09-28]. https://arxiv.org/abs/1711.07010. DOI: 10.48550/arXiv.1711.07010. [29]TIAN Y H, CHEN G M, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021:4458-4471. DOI: 10.18653/v1/2021.acl-long.344. [30]QIN Y B, YANG W Z, WANG K, et al. Entity relation extraction based on entity indicators[J]. Symmetry, 2021, 13(4): 539. DOI: 10.3390/sym13040539. [31]WANG K, CHEN Y P, WEN K J, et al. Cue prompt adapting model for relation extraction[J]. Connection Science, 2023, 35(1): 2161478. DOI: 10.1080/09540091.2022.2161478. [32]TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. (2023-02-27)[2024-09-28]. https://arxiv.org/abs/2302.13971. DOI: 10.48550/arXiv.2302.13971. [33]LI B, YU D Y, YE W, et al. Sequence generation with label augmentation for relation extraction[C]// Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. Menlo Park, CA: AAAI Press, 2023: 13043-13050. DOI: 10.1609/aaai.v37i11.26532. [34]ZHAO Q H, GAO T H, GUO N. A novel Chinese relation extraction method using polysemy rethinking mechanism[J]. Applied Intelligence, 2023, 53(7): 7665-7676. DOI: 10.1007/s10489-022-03817-5. |
| [1] | HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1-11. |
| [2] | HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43-56. |
| [3] | WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36. |
| [4] | PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112. |
| [5] | HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71. |
| [6] | TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46. |
| [7] | ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56. |
| [8] | MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90. |
| [9] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
| [10] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
| [11] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
| [12] | YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71. |
| [13] | FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59. |
| [14] | WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41. |
| [15] | WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88. |
|
||