Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 1-11.doi: 10.16088/j.issn.1001-6600.2024092703

• CCIR2024 •     Next Articles

Fusing Boundary Interaction Information for Named Entity Recognition

HE Ankang1,2,3, CHEN Yanping1,2,3*, HU Ying1,2,3, HUANG Ruizhang1,2,3, QIN Yongbin1,2,3   

  1. 1. Text Computing and Cognitive Intelligence Engineering Research Center of the Ministry of Education, Guizhou University, Guiyang Guizhou 550025, China;
    2. State Key Laboratory of Public Big Data (Guizhou University), Guiyang Guizhou 550025, China;
    3. College of Computer Science and Technology, Guizhou University, Guiyang Guizhou 550025, China
  • Received:2024-09-27 Revised:2024-12-20 Online:2025-05-05 Published:2025-05-14

Abstract: As a basic task in natural language processing, named entity recognition (NER) can effectively identify and classify named entities in text. Some progress has been made in entity recognition with span-based methods, but the quality differences between candidate spans are often overlooked. To tackle the problem, a named entity recognition method that fuses boundary interaction information is proposed. A boundary interaction module is used to evaluate the semantic associations and interaction strengths between boundaries, and a boundary interaction information matrix is generated. This matrix is used to identify potential semantic connections between boundaries, guiding the model to recognize and mark high-quality candidate spans. Additionally, a multi-scale dilated convolution module is integrated to reduce the impact of non-entity noise by utilizing the semantic relationships between spans. It is demonstrated through experiments that the method achieves F1 scores of 89.78%, 87.37%, and 72.10% on the ACE2005 Chinese dataset, ACE2005 English dataset, and Weibo dataset, respectively. These results represent improvements of 0.67, 0.95, and 0.69 percentage points over baseline models, validating the effectiveness of the proposed method for named entity recognition.

Key words: natural language processing, named entity recognition, information extraction, boundary interaction

CLC Number:  TP391.1
[1] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304. DOI: 10.3778/j.issn.1673-9418.2107031.
[2]乔勇鹏, 于亚新, 刘树越, 等. 图卷积增强多路解码的实体关系联合抽取模型[J]. 计算机研究与发展, 2023, 60(1): 153-166. DOI: 10.7544/issn1000-1239.202110767.
[3]冀相冰, 朱艳辉, 詹飞, 等. 基于门控多层次注意机制的事件主体抽取[J]. 计算机应用与软件, 2021, 38(9): 173-179, 187. DOI: 10.3969/j.issn.1000-386x.2021.09.027.
[4]秦贺然, 刘浏, 李斌, 等. 融入实体特征的典籍自动分类研究[J]. 数据分析与知识发现, 2019, 3(9): 68-76. DOI: 10.11925/infotech.2096-3467.2019.0135.
[5]肖新凤, 李石君, 余伟, 等. 基于改进seq2seq模型的英汉翻译研究[J]. 计算机工程与科学, 2019, 41(7): 1257-1265. DOI: 10.3969/j.issn.1007-130X.2019.07.016.
[6]俞鸿魁, 张华平, 刘群, 等. 基于层叠隐马尔可夫模型的中文命名实体识别[J]. 通信学报, 2006, 27(2): 87-94. DOI: 10.3321/j.issn:1000-436X.2006.02.013.
[7]胡文博, 都云程, 吕学强, 等. 基于多层条件随机场的中文命名实体识别[J]. 计算机工程与应用, 2009, 45(1): 163-165, 227. DOI: 10.3778/j.issn.1002-8331.2009.01.051.
[8]陈启丽, 黄冠和, 王元卓, 等. 一种融合注意力机制的自适应实体识别方法[J]. 中文信息学报, 2021, 35(6): 55-62, 73. DOI: 10.3969/j.issn.1003-0077.2021.06.006.
[9]SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 605-620. DOI: 10.1162/tacl_a_00334.
[10]WANG J, SHOU L D, CHEN K, et al. Pyramid: a layered model for nested named entity recognition[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 5918-5928. DOI: 10.18653/v1/2020.acl-main.525.
[11]LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2015: 857-867. DOI: 10.18653/v1/D15-1102.
[12]MUIS A O, LU W. Learning to recognize discontiguous entities[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 75-84. DOI: 10.18653/v1/D16-1008.
[13]WANG B L, LU W. Neural segmental hypergraphs for overlapping mention recognition[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 204-214. DOI: 10.18653/v1/D18-1019.
[14]LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 7871-7880. DOI: 10.18653/v1/2020.acl-main.703.
[15]CUI L Y, WU Y, LIU J, et al. Template-based named entity recognition using BART[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 1835-1845. DOI: 10.18653/v1/2021.findings-acl.161.
[16]FEI H, JI D H, LI B B, et al. Rethinking boundaries: end-to-end recognition of discontinuous mentions with pointer networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(14): 12785-12793. DOI: 10.1609/aaai.v35i14.17513.
[17]扈应, 陈艳平, 黄瑞章, 等. 结合CRF的边界组合生物医学命名实体识别[J]. 计算机应用研究, 2021, 38(7): 2025-2031. DOI: 10.19734/j.issn.1001-3695.2020.09.0238.
[18]黄蓉, 陈艳平, 扈应, 等. 结合实体边界线索的中文命名实体识别方法[J]. 计算机工程与应用, 2024, 60(6): 199-206. DOI: 10.3778/j.issn.1002-8331.2211-0119.
[19]YU J T, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 6470-6476. DOI: 10.18653/v1/2020.acl-main.577.
[20]DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[EB/OL]. (2017-03-10)[2024-09-27]. https://arxiv.org/abs/1611.01734. DOI: 10.48550/arXiv.1611.01734.
[21]SHEN Y L, MA X Y, TAN Z Q, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 2782-2794. DOI: 10.18653/v1/2021.acl-long.216.
[22]LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10965-10973. DOI: 10.1609/aaai.v36i10.21344.
[23]JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1): 27. DOI: 10.1186/s40537-019-0192-5.
[24]WAN J C, RU D Y, ZHANG W N, et al. Nested named entity recognition with span-level graphs[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 892-903. DOI: 10.18653/v1/2022.acl-long.63.
[25]COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. The Journal of Machine Learning Research, 2011, 12: 2493-2537.
[26]YAN H, DENG B C, LI X N, et al. TENER: adapting transformer encoder for named entity recognition[EB/OL]. (2019-12-10)[2024-09-27]. https://arxiv.org/abs/1911.04474. DOI: 10.48550/arXiv.1911.04474.
[27]LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2001: 282-289.
[28]WANG Y C, YU B W, ZHU H S, et al. Discontinuous named entity recognition as maximal clique discovery[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 764-774. DOI: 10.18653/v1/2021.acl-long.63.
[29]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[30]WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: Association for Computational Linguistics, 2019: 5784-5789. DOI: 10.18653/v1/D19-1585.
[31]LI F, LIN Z C, ZHANG M S, et al. A span-based model for joint overlapped and discontinuous named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 4814-4828. DOI: 10.18653/v1/2021.acl-long.372.
[32]NIAN Y M, CHENY P, QIN Y B, et al. A joint model for entity boundary detection and entity span recognition[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10, Part A): 8362-8369. DOI: 10.1016/j.jksuci.2022.08.016.
[33]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[34]HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. (2023-06-06)[2024-09-27]. https://arxiv.org/abs/1606.08415. DOI: 10.48550/arXiv.1606.08415.
[35]CHEN Y P, WU Y F, QIN Y B, et al. Recognizing nested named entity based on the neural network boundary assembling model[J]. IEEE Intelligent Systems, 2020, 35(1): 74-81. DOI: 10.1109/MIS.2019.2952334.
[36]SHEN Y L, SONG K T, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2023: 3875-3890. DOI: 10.18653/v1/2023.acl-long.215.
[37]ZHU E W, LI J P. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 7096-7108. DOI: 10.18653/v1/2022.acl-long.490.
[38]WANG S H, SUN X F, LI X Y, et al. GPT-NER: named entity recognition via large language models[EB/OL]. (2023-10-07)[2024-09-27]. https://arxiv.org/abs/2304.10428. DOI: 10.48550/arXiv.2304.10428.
[1] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22.
[2] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[3] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71.
[4] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[5] WAN Fucheng,MA Ning,HE Xiangzhen. Tibetan Information Extraction Technology Integrated with Event Feature and Semantic Role Labeling [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 18-23.
[6] LI Jing-wen, ZHANG Zi-ping, GUO Wei-li, SU Hao, LUO Wen-bing. A High Resolution Image Segmentation Method of a Combination ofWatershed and Multi-scale [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 40-44.
[7] ZHANG Chun-yuan. Automatic Web News Content Extraction Based on CRFs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 138-142.
[8] CHENG Xian-yi, PAN Yan, ZHU Qian, SUN Ping. Automatic Generating Algorithm of Event-oriented Multi-documentSummarization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 147-150.
[9] HUANG Feng, WU Hua-rui. An Automatic Generating Method of Adaptable Web Information Extraction Rule [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 127-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!