Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 69-82.doi: 10.16088/j.issn.1001-6600.2024102502
• Intelligence Information Processing • Previous Articles Next Articles
LI Zhixin1,2*, KUANG Wenlan1,2
| [1] 李志欣, 张佳, 吴璟莉, 等. 基于半监督对抗学习的图像语义分割[J]. 中国图象图形学报, 2022, 27(7): 2157-2170. DOI: 10.11834/jig.200600. [2] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722. DOI: 10.11834/jig.220069. [3] 刘颖, 庞羽良, 张伟东, 等. 基于主动学习的图像分类技术: 现状与未来[J]. 电子学报, 2023, 51(10): 2960-2984. DOI: 10.12263/DZXB.20230397. [4] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03)[2024-10-25]. https://arxiv.org/abs/2010.11929. DOI: 10.48550/arXiv.2010.11929. [5] 李志欣, 侯传文, 谢秀敏. 融合多重实例关系的无监督跨模态哈希检索[J]. 软件学报, 2023, 34(11): 4973-4988. DOI: 10.13328/j.cnki.jos.006742. [6] 卓亚琦, 魏家辉, 李志欣. 基于双注意模型的图像描述生成方法研究[J]. 电子学报, 2022, 50(5): 1123-1130. DOI: 10.12263/DZXB.20210696. [7] 李志欣, 苏强. 基于知识辅助的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022,40(5): 418-432. DOI: 10.16088/j.issn.1001-6600.2022013101. [8] 项剑文, 陈泯融, 杨百冰. 结合Swin及多尺度特征融合的细粒度图像分类[J]. 计算机工程与应用, 2023, 59(20): 147-157. DOI: 10.3778/j.issn.1002-8331.2211-0456. [9] HU Y Q, JIN X, ZHANG Y, et al. RAMS-trans: recurrent attention multi-scale transformer for fine-grained image recognition[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2021: 4239-4248. DOI: 10.1145/3474085.3475561. [10] XU Q, WANG J H, JIANG B, et al. Fine-grained visual classification via internal ensemble learning transformer[J]. IEEE Transactions on Multimedia, 2023, 25: 9015-9028. DOI: 10.1109/TMM.2023.3244340. [11] KE X, CAI Y H, CHEN B T, et al. Granularity-aware distillation and structure modeling region proposal network for fine-grained image classification[J]. Pattern Recognition, 2023, 137: 109305. DOI: 10.1016/j.patcog.2023.109305. [12] ZHENG S J, WANG G C, YUAN Y J, et al. Fine-grained image classification based on TinyVit object location and graph convolution network[J]. Journal of Visual Communication and Image Representation, 2024, 100: 104120. DOI: 10.1016/j.jvcir.2024.104120. [13] XIE J J, ZHONG Y J, ZHANG J G, et al. A weakly supervised spatial group attention network for fine-grained visual recognition[J]. Applied Intelligence, 2023, 53(20): 23301-23315. DOI: 10.1007/s10489-023-04627-z. [14] 贺小箭, 林金福. 融合弱监督目标定位的细粒度小样本学习[J]. 中国图象图形学报, 2022, 27(7): 2226-2239. DOI: 10.11834/jig.200849. [15] 黄程, 曾志高, 朱文球, 等. 基于弱监督多注意融合网络的细粒度图像识别[J]. 现代信息科技, 2022, 6(21): 78-82, 87. DOI: 10.19850/j.cnki.2096-4706.2022.21.019. [16] GAO Y, HAN X T, WANG X, et al. Channel interaction networks for fine-grained image categorization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10818-10825. DOI: 10.1609/aaai.v34i07.6712. [17] ZHU Q X, KUANG W L, LI Z X. A collaborative gated attention network for fine-grained visual classification[J]. Displays, 2023, 79: 102468. DOI: 10.1016/j.displa.2023.102468. [18] WANG Q, WANG J J, DENG H Y, et al. AA-trans: core attention aggregating transformer with information entropy selector for fine-grained visual classification[J]. Pattern Recognition, 2023, 140: 109547. DOI: 10.1016/j.patcog.2023.109547. [19] XU Y, WU S S, WANG B Q, et al. Two-stage fine-grained image classification model based on multi-granularity feature fusion[J]. Pattern Recognition, 2024, 146: 110042. DOI: 10.1016/j.patcog.2023.110042. [20] 王梓祺, 李阳, 张睿, 等. 小样本SAR图像分类方法综述[J]. 中国图象图形学报, 2024, 29(7): 1902-1920. DOI: 10.11834/jig.230359. [21] 杨传广, 陈路明, 赵二虎, 等. 基于图表征知识蒸馏的图像分类方法[J]. 电子学报, 2024, 52(10): 3435-3447. DOI: 10.12263/DZXB.20230976. [22] 宋燕, 王勇. 多阶段注意力胶囊网络的图像分类[J]. 自动化学报, 2024, 50(9): 1804-1817. DOI: 10.16383/j.aas.c210012. [23] WU H P, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 22-31. DOI: 10.1109/ICCV48922.2021.00009. [24] SHAO R, BI X J, CHEN Z. Hybrid ViT-CNN network for fine-grained image classification[J]. IEEE Signal Processing Letters, 2024, 31: 1109-1113. DOI: 10.1109/LSP.2024.3386112. [25] HE J, CHEN J N, LIU S, et al. TransFG: a transformer architecture for fine-grained recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 852-860. DOI: 10.1609/aaai.v36i1.19967. [26] DU R Y, XIE J Y, MA Z Y, et al. Progressive learning of category-consistent multi-granularity features for fine-grained visual classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(12): 9521-9535. DOI: 10.1109/TPAMI.2021.3126668. [27] CHEN T H, LI Y Y, QIAO Q H. Fine-grained bird image classification based on counterfactual method of vision transformer model[J]. The Journal of Supercomputing, 2024, 80(5): 6221-6239. DOI: 10.1007/s11227-023-05701-6. [28] JI R Y, LI J Y, ZHANG L B, et al. Dual transformer with multi-grained assembly for fine-grained visual classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 5009-5021. DOI: 10.1109/TCSVT.2023.3248791. [29] CHEN H Z, ZHANG H M, LIU C, et al. FET-FGVC: feature-enhanced transformer for fine-grained visual classification[J]. Pattern Recognition, 2024, 149: 110265. DOI: 10.1016/j.patcog.2024.110265. [30] SERRANO S, SMITH N A. Is attention interpretable?[EB/OL]. (2019-06-09)[2024-10-25]. https://arxiv.org/abs/1906.03731. DOI: 10.48550/arXiv.1906.03731. [31] ABNAR S, ZUIDEMA W. Quantifying attention flow in transformers[EB/OL]. (2020-05-31)[2024-10-25]. https://arxiv.org/abs/2005.00928. DOI: 10.48550/arXiv.2005.00928. [32] ZHOU M H, BAI Y L, ZHANG W, et al. Look-into-object: self-supervised structure modeling for object recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11771-11780. DOI: 10.1109/CVPR42600.2020.01179. [33] WANG J G, LI J, YAU W Y, et al. Boosting dense SIFT descriptors and shape contexts of face images for gender recognition[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. Los Alamitos, CA: IEEE Computer Society, 2010: 96-102. DOI: 10.1109/CVPRW.2010.5543238. [34] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 13130-13137. DOI: 10.1609/aaai.v34i07.7016. [35] WAH C, BRANSON S, WELINDER P, et al. Caltech-UCSD birds-200-2011 (CUB-200-2011): CNS-TR-2011-001[DS/OL]. (2011-07-30)[2024-10-25]. https://www.vision.caltech.edu/datasets/cub_200_2011/. [36] KHOSLA A, JAYADEVAPRAKASH N, YAO B P, et al. Stanford dogs dataset[DS/OL]. (2012-11-21)[2024-10-25]. http://vision.stanford.edu/aditya86/ImageNetDogs/main.html. [37] VAN HORN G, BRANSON S, FARRELL R, et al. Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2015: 595-604. DOI: 10.1109/CVPR.2015.7298658. [38] LUO W, YANG X T, MO X J, et al. Cross-X learning for fine-grained visual categorization[C]// IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 8241-8250. DOI: 10.1109/ICCV.2019.00833. [39] LIANG Y Z, ZHU L C, WANG X H, et al. Penalizing the hard example but not too much: a strong baseline for fine-grained visual classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 7048-7059. DOI: 10.1109/TNNLS.2022.3213563. [40] HUANG S L, WANG X C, TAO D C. Stochastic partial swap: enhanced model generalization and interpretability for fine-grained recognition[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 600-609. DOI: 10.1109/ICCV48922.2021.00066. [41] ZHANG L B, HUANG S L, LIU W. Learning sequentially diversified representations for fine-grained categorization[J]. Pattern Recognition, 2022, 121: 108219. DOI: 10.1016/j.patcog.2021.108219. [42] ZHU Q X, LI Z X, KUANG W L, et al. A multichannel location-aware interaction network for visual classification[J]. Applied Intelligence, 2023, 53(20): 23049-23066. DOI: 10.1007/s10489-023-04734-x. [43] PU Y F, HAN Y Z, WANG Y L, et al. Fine-grained recognition with learnable semantic data augmentation[J]. IEEE Transactions on Image Processing, 2024, 33: 3130-3144. DOI: 10.1109/TIP.2024.3364500. [44] HU X B, ZHU S N, PENG T L. Hierarchical attention vision transformer for fine-grained visual classification[J]. Journal of Visual Communication and Image Representation, 2023, 91: 103755. DOI: 10.1016/j.jvcir.2023.103755. [45] LIU X D, WANG L L, HAN X G. Transformer with peak suppression and knowledge guidance for fine-grained image recognition[J]. Neurocomputing, 2022,492: 137-149. DOI: 10.1016/j.neucom.2022.04.037. [46] YE S, YU S J, WANG Y, et al.R2-trans: fine-grained visual categorization with redundancy reduction[J]. Image and Vision Computing, 2024, 143: 104923. DOI: 10.1016/j.imavis.2024.104923. [47] ZHANG Z C, CHEN Z D, WANG Y X, et al. A vision transformer for fine-grained classification by reducing noise and enhancing discriminative information[J]. Pattern Recognition, 2024, 145: 109979. DOI: 10.1016/j.patcog.2023.109979. |
| [1] | PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111. |
| [2] | ZHUO Ming, LIU Leyuan, ZHOU Shijie, YANG Peng, WAN Simin. A New Method for Invulnerability Analysis of Spatial Information Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 21-31. |
|