Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 24-37.doi: 10.16088/j.issn.1001-6600.2024042401

• Intelligence Information Processing • Previous Articles     Next Articles

Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies

SONG Mingkai, ZHU Chengjie*   

  1. College of Electrical and Information Engineering Anhui University of Science and Technology, Huainan Anhui 232001, China
  • Received:2024-04-24 Revised:2024-06-26 Online:2025-07-05 Published:2025-07-14

Abstract: The grid-connection of distributed generations and the gradually expanding scale of distribution networks make the traditional fault location methods more difficult. A multi-strategy improved Hybrid Whale Optimization Algorithm Gray Wolf Optimization (H-WOA-GWO) combined with region correction fault location method is proposed to address this problem. Firstly, the WOA encircling contraction and spiral updating mechanisms are integrated into GWO to construct a hybrid algorithm to effectively improve the convergence speed; then the nonlinear convergence factor, improved leader wolf position and adaptive hunting weights are applied to enhance the search adaptability, global development capability and shorten the iteration time. Different location models are established to choose in constructing the objective function based on the evaluation function value method, and the region correction strategy is proposed by analyzing the potential information of the pseudo-optimal solution. After simulation verification, under triple faults: the correct rate of hybrid algorithm is 11 percentage points centa higher than that of single algorithm, and the iteration time can be saved by 0.326 7 s; the correct rate and solution time after combining with the region correction strategy are improved by 17 percentage points and 74.88%, respectively, compared with that of pure hybrid algorithm. It shows that the proposed algorithm and correction strategy can quickly and accurately recognize multiple and multi-deformed node faults with efficient solution speed and stability.

Key words: improved binary gray wolf optimizer, whale optimization algorithm, region correction, distributed generations, fault location

CLC Number:  TP18;TM73
[1] 张雅婷,郭亮,郭达,等.改进量子遗传算法在含分布式电源配电网中的应用[J].电测与仪表,2023,60(11): 130-135. DOI: 10.19753/j.issn1001-1390.2023.11.018.
[2] 袁明瀚,杨学信,李亦农,等.计及信息畸变的有源配电网故障区段定位[J].上海电力大学学报,2023,39(3): 237-243. DOI: 10.3969/j.issn.2096-8299.2023.03.005.
[3] 张尚德.基于改进鲸鱼算法的配电网故障区段定位与恢复重构研究[D].重庆: 重庆理工大学,2023. DOI: 10.27753/d.cnki.gcqgx.2023.000222.
[4] 张莲,宫宇,杨洪杰,等.基于自适应遗传粒子群算法的配电网故障定位[J].重庆理工大学学报(自然科学),2021,35(9): 160-168. DOI: 10.3969/j.issn.1674-8425(z).2021.09.020.
[5] 王秋杰,金涛,谭洪,等.基于分层模型和智能校验算法的配电网故障定位技术[J].电工技术学报,2018,33(22): 5327-5337. DOI: 10.19595/j.cnki.1000-6753.tces.171362.
[6] 吴艺,文中,冯铃,等.基于ICOA-IEM算法的含分布式电源配电网分区故障定位[J].广西师范大学学报(自然科学版),2024,42(4): 64-73. DOI: 10.16088/j.issn.1001-6600.2023041407.
[7] 高锋阳,李昭君,袁成,等.量子计算和免疫优化算法相结合的有源配电网故障定位[J].高电压技术,2021,47(2): 396-405. DOI: 10.13336/j.1003-6520.hve.20200507021.
[8] 毕忠勤,余晓婉,王宝楠,等.基于量子蚁群算法的配电网故障区段快速定位技术[J].上海交通大学学报,2024,58(5): 693-708. DOI: 10.16183/j.cnki.jsjtu.2023.004.
[9] BLUM C, PUCHINGER J, RAIDL G R, et al. Hybrid metaheuristics in combinatorial optimization: a survey[J]. Applied Soft Computing, 2011, 11(6): 4135-4151. DOI: 10.1016/j.asoc.2011.02.032.
[10] 陈思煜.基于群体智能的云计算任务调度算法研究[D].西安: 西北大学,2022. DOI: 10.27405/d.cnki.gxbdu.2022.000077.
[11] 付文凯.基于改进BGWO算法的矿山技术评价指标选取方法研究[D].天津: 天津大学,2022. DOI: 10.27356/d.cnki.gtjdu.2022.000313.
[12] 王秋杰,金涛,刘军.计及FTU漏报和误报的配电网故障定位分层解析模型[J].电力自动化设备,2019,39(1): 141-147. DOI: 10.16081/j.issn.1006-6047.2019.01.021.
[13] 李竹根,刘波峰,张晓飞,等.基于改进灰狼算法与隐枚举法的配电网分区故障定位研究[J].电测与仪表,2024,61(8): 157-165. DOI: 10.19753/j.issn1001-1390.2024.08.021.
[14] 杨柳,王巍.动态工况下基于WOA-BiGRU的PEMFC性能退化预测[J].重庆理工大学学报(自然科学),2024,38(1): 319-327. DOI: 10.3969/j.issn.1674-8425(z).2024.01.035.
[15] LUO K P, ZHAO Q H. A binary grey wolf optimizer for the multidimensional knapsack problem[J]. Applied Soft Computing, 2019, 83: 105645. DOI: 10.1016/j.asoc.2019.105645.
[16] MOMANYI E, SEGERA D. A master-slave binary grey wolf optimizer for optimal feature selection in biomedical data classification[J]. BioMed Research International, 2021, 2021: 5556941. DOI: 10.1155/2021/5556941.
[17] 李卫彬,童欣,黄超,等.基于分层定位模型的含DG配电网故障定位方法研究[J].电力系统保护与控制,2022,50(24): 160-166. DOI: 10.19783/j.cnki.pspc.220372.
[18] 秋兴国,王瑞知,张卫国,等.基于混合策略改进的鲸鱼优化算法[J].计算机工程与应用,2022,58(1): 70-78. DOI: 10.3778/j.issn.1002-8331.2012-0316.
[19] 郭家虎,时曼玉.自适应可调节边界的蚁狮优化算法[J].安徽理工大学学报(自然科学版),2023,43(4): 1-9,18. DOI: 10.3969/j.issn.1672-1098.2023.04.001.
[20] MIAO Z M, YUAN X F, ZHOU F Y, et al. Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem[J]. Applied Soft Computing, 2020, 96: 106602. DOI: 10.1016/j.asoc.2020.106602.
[21] LONG W, JIAO J J, LIANG X M, et al. Inspired grey wolf optimizer for solving large-scale function optimization problems[J]. Applied Mathematical Modelling, 2018, 60: 112-126. DOI: 10.1016/j.apm.2018.03.005.
[22] 汪凯,吴军,刘涤尘,等.基于需求差异化的电网核心骨干网架构建[J].电测与仪表,2018,55(2): 25-32. DOI: 10.3969/j.issn.1001-1390.2018.02.005.
[23] 贾新春,智瀚宇,池小波,等.机器人路径规划:一个改进的粒子群灰狼混合算法[J].山西大学学报(自然科学版),2023,46(6): 1307-1314. DOI: 10.13451/j.sxu.ns.2023029.
[1] WU Yi, WEN Zhong, FENG Ling, QIN Zhiyin, ZHENG Lianhua, TANG Weizhao. Fault Location of a Distribution Network Hierarchical Model with a Distribution Generator Based on ICOA-IEM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 64-73.
[2] HAN Xinyue, DENG Changzheng, FU Tian, XIA Pengyu, LIU Xuan. Transient Electromagnetic Defect Identification of Grounding Grid Based on MWOA-Elman Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 53-66.
[3] ZHENG Jing, ZOU Yan-li, HE Yu-yu, CHEN De-xia. The Effect of Two Different Distributed Connection Strategieson Dynamic Characteristics in Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .