Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 97-107.doi: 10.16088/j.issn.1001-6600.2024081301
• Intelligence Information Processing • Previous Articles Next Articles
WANG Xuyang*, ZHANG Jiayu
| [1] 刘佳, 宋泓, 陈大鹏, 等. 非语言信息增强和对比学习的多模态情感分析模型[J]. 电子与信息学报, 2024,46(8): 3372-3381. DOI: 10.11999/JEIT231274. [2] 王旭阳, 董帅, 石杰. 复合层次融合的多模态情感分析[J]. 计算机科学与探索, 2023, 17(1): 198-208. DOI: 10.3778/j.issn.1673-9418.2111004. [3] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438. DOI: 10.16451/j.cnki.issn1003-6059.202005005. [4] 卢婵, 郭军军, 谭凯文, 等. 基于文本指导的层级自适应融合的多模态情感分析[J]. 山东大学学报(理学版), 2023, 58(12): 31-40, 51. DOI: 10.6040/j.issn.1671-9352.1.2022.421. [5] CHAUHAN D S, AKHTAR M S, EKBAL A, et al. Context-aware interactive attention for multi-modal sentiment and emotion analysis[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: Association for Computational Linguistics, 2019: 5647-5657. DOI: 10.18653/v1/D19-1566. [6] XU G X, MENG Y T, QIU X Y, et al. Sentiment analysis of comment texts based on BiLSTM[J]. IEEE Access, 2019, 7: 51522-51532. DOI: 10.1109/ACCESS.2019.2909919. [7] BAI Z W, CHEN X H, ZHOU M L, et al. Low-rank multimodal fusion algorithm based on context modeling[J]. Journal of Internet Technology, 2021, 22(4): 913-921. DOI: 10.53106/160792642021072204018. [8] 赵小明, 杨轶娇, 张石清. 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索, 2022, 16(7): 1479-1503. DOI: 10.3778/j.issn.1673-9418.2112081. [9] ZADEH A, LIANG P P, PORIA S, et al. Multi-attention recurrent network for human communication comprehension[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5642-5649. DOI: 10.1609/aaai.v32i1.12024. [10] LI X, CHEN M P. Multimodal sentiment analysis with multi-perspective fusion network focusing on sense attentive language[C]// Chinese Computational Linguistics. Cham: Springer International Publishing, 2020: 359-373. DOI: 10.1007/978-3-030-63031-7_26. [11] 田昌宁, 贺昱政, 王笛, 等. 基于Transformer的多子空间多模态情感分析[J]. 西北大学学报(自然科学版), 2024, 54(2): 156-167. DOI: 10.16152/j.cnki.xdxbzr.2024-02-002. [12] HAN W, CHEN H, GELBUKH A, et al. Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis[C]// Proceedings of the 2021 international conference on multimodal interaction. New York, NY: Association for Computing Machinery, 2021: 6-15. DOI: 10.1145/3462244.3479919. [13] 王旭阳, 王常瑞, 张金峰, 等. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024,42(2): 84-93. DOI: 10.16088/j.issn.1001-6600.2023052701. [14] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 1103-1114. DOI: 10.18653/v1/D17-1115. [15] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2247-2256. DOI: 10.18653/v1/P18-1209. [16] 陈岩松, 张乐, 张雷瀚, 等. 基于跨模态注意力和门控单元融合网络的多模态情感分析方法[J]. 数据分析与知识发现, 2024, 8(7): 67-76. DOI: 10.11925/infotech.2096-3467.2023.0591. [17] 缪裕青, 杨爽, 刘同来, 等. 基于跨模态门控机制和改进融合方法的多模态情感分析[J]. 计算机应用研究, 2023,40(7): 2025-2030, 2038. DOI: 10.19734/j.issn.1001-3695.2022.12.0766. [18] HAZARIKA D, ZIMMERMANN R, PORIA S. MISA: modality-invariant and -specific representations for multimodal sentiment analysis[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2020: 1122-1131. DOI: 10.1145/3394171.3413678. [19] TSAI Y H H, BAI S J, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 6558-6569. DOI: 10.18653/v1/P19-1656. [20] YU W M, XU H, YUAN Z Q, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 10790-10797. DOI: 10.1609/aaai.v35i12.17289. [21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [22] DEGOTTEX G, KANE J, DRUGMAN T, et al. COVAREP: a collaborative voice analysis repository for speech technologies[C]// 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Los Alamitos, CA: IEEE Computer Society, 2014: 960-964. DOI: 10.1109/ICASSP.2014.6853739. [23] EKMAN P, ROSENBERG E L. What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS)[M]. 2nd ed. New York: Oxford University Press, 2005. DOI: 10.1093/acprof:oso/9780195179644.001.0001. [24] SUN H, LIU J Q, CHEN Y W, et al. Modality-invariant temporal representation learning for multimodal sentiment classification[J]. Information Fusion, 2023, 91: 504-514. DOI: 10.1016/j.inffus.2022.10.031. [25] YU Z, YU J, FAN J P, et al. Multi-modal factorized bilinear pooling with co-attention learning for visual question answering[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 1839-1848. DOI: 10.1109/ICCV.2017.202. [26] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19)[2024-08-13]. https://arxiv.org/abs/1803.01271. DOI: 10.48550/arXiv.1803.01271. [27] ZADEH A, ZELLERS R, PINCUS E, et al. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos[EB/OL]. (2016-08-12)[2024-08-13]. https://arxiv.org/abs/1606.06259. DOI: 10.48550/arXiv.1606.06259. [28] ZADEH A A B, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2236-2246. DOI: 10.18653/v1/P18-1208. [29] WANG Y S, SHEN Y, LIU Z, et al. Words can shift: dynamically adjusting Word representations using nonverbal behaviors[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7216-7223. DOI: 10.1609/aaai.v33i01.33017216. [30] HAN W, CHEN H, PORIA S. Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2021: 9180-9192. DOI: 10.18653/v1/2021.emnlp-main.723. [31] SUN H, WANG H Y, LIU J Q, et al. CubeMLP: an MLP-based model for multimodal sentiment analysis and depression estimation[C]// Proceedings of the 30th ACM international conference on multimedia. New York, NY: Association for Computing Machinery, 2022: 3722-3729. DOI: 10.1145/3503161.3548025. [32] ZHU C B, CHEN M, ZHANG S, et al. SKEAFN: sentiment knowledge enhanced attention fusion network for multimodal sentiment analysis[J]. Information Fusion, 2023, 100: 101958. DOI: 10.1016/j.inffus.2023.101958. |
| [1] | HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68. |
| [2] | LI Zhixin, LIU Mingqi. A Dissimilarity Feature-Driven Decoupled Multimodal Sentiment Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 57-71. |
| [3] | ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22-32. |
| [4] | SUN Xu, SHEN Bin, YAN Xin, ZHANG Jinpeng, XU Guangyi. Microblog Opinion Summarization Method Based on Transformer and TextRank [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 96-108. |
| [5] | CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31-39. |
| [6] | LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20-26. |
|