Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 84-97.doi: 10.16088/j.issn.1001-6600.2024071003

• Intelligence Information Processing • Previous Articles     Next Articles

Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8

LIANG Yinjie, NAN Xinyuan*, CAI Xin, LI Yunpeng, GOU Haiguang   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-07-10 Revised:2024-09-06 Online:2025-05-05 Published:2025-05-14

Abstract: In order to solve the problems of low detection accuracy, high missed detection rate and high false detection rate of bridge surface defects under the background of interference, a bridge defect detection method based on data enhancement and improved YOLOv8 is proposed. The small sample data is augmented by StyleGAN3 and depth image fusion. The SPD-Conv module is added to the YOLOv8 backbone to improve the feature extraction capability of low-resolution defects. Based on AFPN structure, AFPN_UCG structure is designed to make the network handle multi-scale information better. In C2f, RFCBAMConv and DLKA modules are introduced to construct C2f_RD module, which can transmit gradient information accurately and capture small target information more effectively. A new detection Head is designed by combining DCNv3 module with Dynamic Head, which combines three attention mechanisms of scale, space and task and uses DCNv3 dynamic adjustment to further improve the prediction performance of the model for irregular defects. Through experiments, mAP@0.5 increases by 2.4 percentage points after the data is expanded, and the accuracy rate of the improved YOLOv8 is 93.2% and mAP@0.5 is 91.3%, respectively, which are 4.2 and 4.3 percentage points higher than that of the original model, which can detect bridge defects more accurately.

Key words: bridge defect detection, StyleGAN3, YOLOv8, feature fusion, convolution of attention;information interactive

CLC Number:  TP391.41
[1] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J].中国公路学报,2021,34(2):1-97. DOI: 10.3969/j.issn.1001-7372.2021.02.002.
[2]陈榕峰,徐群丽,秦凯强.桥梁裂缝智能检测系统的研究新进展[J].公路,2019,64(5):101-105.
[3]李学军,权林霏,刘冬梅,等.基于Faster-RCNN改进的交通标志检测算法[J/OL].吉林大学学报(工学版):1-10[2024-06-30].https://doi.org/10.13229/j.cnki.jdxbgxb.20230553. DOI: 10.13229/j.cnki.jdxbgxb.20230553.
[4]茅智慧,朱佳利,吴鑫,等.基于YOLO的自动驾驶目标检测研究综述[J].计算机工程与应用,2022,58(15):68-77. DOI: 10.3778/j.issn.1002-8331.2203-0310.
[5]郭翔羽,石天怡,陈燕楠,等.基于YOLO-CDBW模型的列车接触网异物检测研究[J].广西师范大学学报(自然科学版),2025,43(2): 56-69. DOI: 10.16088/j.issn.1001-6600.2024040102.
[6]ALI R, KANG D, SUH G, et al. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures[J]. Automation in Construction, 2021, 130: 103831. DOI: 10.1016/j.autcon.2021.103831.
[7]LI R X, YU J Y, LI F, et al. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN[J]. Construction and Building Materials, 2023, 362: 129659. DOI: 10.1016/j.conbuildmat.2022.129659.
[8]毛莺池,唐江红,王静,等.基于Faster R-CNN的多任务增强裂缝图像检测方法[J].智能系统学报,2021,16(2):286-293. DOI: 10.11992/tis.201910004.
[9]ZHANG C B, CHANG C C, JAMSHIDI M. Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409. DOI: 10.1111/mice.12500.
[10]YU L C, HE S H, LIU X S, et al. Intelligent crack detection and quantification in the concrete bridge: A deep learning-assisted image processing approach[J]. Advances in Civil Engineering, 2022,2022(1): 1813821. DOI: 10.1155/2022/1813821.
[11]何金宝,胡秋宝,付志超,等.基于DCGAN和改进YOLOv5s的桥梁表面缺陷检测识别[J].江西师范大学学报(自然科学版),2022,46(6):655-660. DOI: 10.16357/j.cnki.issn1000-5862.2022.06.14.
[12]彭雨诺,刘敏,万智,等.基于改进YOLO的双网络桥梁表观病害快速检测算法[J].自动化学报,2022,48(4):1018-1032. DOI: 10.16383/j.aas.c210807.
[13]李松,史涛,井方科.改进YOLOv8的道路损伤检测算法[J].计算机工程与应用,2023,59(23):165-174. DOI: 10.3778/j.issn.1002-8331.2306-0205.
[14]张彬,周粤川,张敏,等.生成对抗网络改进角度与应用研究综述[J].计算机应用研究,2023,40(3):649-658. DOI: 10.19734/j.issn.1001-3695.2022.08.0410.
[15]KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021, 34: 852-863.
[16]ZHANG L Z, WEN T, SHI J B. Deep image blending[C]// 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2020: 231-240. DOI: 10.1109/WACV45572.2020.9093632.
[17]SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for Low-Resolution images and small objects[C]// Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2023: 443-459. DOI: 10.1007/978-3-031-26409-2_27.
[18]YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Los Alamitos, CA: IEEE Computer Society, 2023: 2184-2189. DOI: 10.1109/SMC53992.2023.10394415.
[19]WU T Y, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. DOI: 10.1109/TIP.2020.3042065.
[20]ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[EB/OL]. (2024-03-28)[2024-07-04]. https://arxiv.org/abs/2304.03198. DOI: 10.48550/arXiv.2304.03198.
[21]AZAD R, NIGGEMEIER L, HÜTTEMANN M, et al. Beyond self-attention: deformable large kernel attention for medical image segmentation[C]// 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2024: 1276-1286. DOI: 10.1109/WACV57701.2024.00132.
[22]DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 7369-7378. DOI: 10.1109/CVPR46437.2021.00729.
[23]WANG W H, DAI J F, CHEN Z, et al. Internimage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 14408-14419. DOI: 10.1109/CVPR52729.2023.01385.
[24]吴利刚,陈乐,刘泽鹏,等.基于YOLOv8-ABW的黄花成熟度检测方法[J].农业工程学报,2024,40(13):262-272. DOI: 10.11975/j.issn.1002-6819.202401074.
[25]张林鍹,巴音塔娜,曾庆松.基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法[J].农业机械学报,2024,55(1):241-252.
[26]WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. (2024-05-23)[2024-07-04]. https://arxiv.org/abs/2405.14458. DOI: 10.48550/arXiv.2405.14458.
[27]WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-29)[2024-07-04]. https://arxiv.org/abs/2402.13616. DOI: 10.48550/arXiv.2402.13616.
[28]ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2024: 16965-16974. DOI: 10.1109/CVPR52733.2024.01605.
[29]XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[EB/OL]. (2023-04-24)[2024-07-04]. https://arxiv.org/abs/2211.15444. DOI: 10.48550/arXiv.2211.15444.
[1] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[2] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[3] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[4] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107.
[5] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51-61.
[6] CAI Likun, WU Yunbing, CHEN Ganlin, LIU Chongling, LIAO Xiangwen. Category Text Generation Based on Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 79-90.
[7] PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111.
[8] XUE Qiwei, WU Xiru. Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 37-48.
[9] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[10] BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11.
[11] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!