Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 84-97.doi: 10.16088/j.issn.1001-6600.2024071003
• Intelligence Information Processing • Previous Articles Next Articles
LIANG Yinjie, NAN Xinyuan*, CAI Xin, LI Yunpeng, GOU Haiguang
| [1] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J].中国公路学报,2021,34(2):1-97. DOI: 10.3969/j.issn.1001-7372.2021.02.002. [2]陈榕峰,徐群丽,秦凯强.桥梁裂缝智能检测系统的研究新进展[J].公路,2019,64(5):101-105. [3]李学军,权林霏,刘冬梅,等.基于Faster-RCNN改进的交通标志检测算法[J/OL].吉林大学学报(工学版):1-10[2024-06-30].https://doi.org/10.13229/j.cnki.jdxbgxb.20230553. DOI: 10.13229/j.cnki.jdxbgxb.20230553. [4]茅智慧,朱佳利,吴鑫,等.基于YOLO的自动驾驶目标检测研究综述[J].计算机工程与应用,2022,58(15):68-77. DOI: 10.3778/j.issn.1002-8331.2203-0310. [5]郭翔羽,石天怡,陈燕楠,等.基于YOLO-CDBW模型的列车接触网异物检测研究[J].广西师范大学学报(自然科学版),2025,43(2): 56-69. DOI: 10.16088/j.issn.1001-6600.2024040102. [6]ALI R, KANG D, SUH G, et al. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures[J]. Automation in Construction, 2021, 130: 103831. DOI: 10.1016/j.autcon.2021.103831. [7]LI R X, YU J Y, LI F, et al. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN[J]. Construction and Building Materials, 2023, 362: 129659. DOI: 10.1016/j.conbuildmat.2022.129659. [8]毛莺池,唐江红,王静,等.基于Faster R-CNN的多任务增强裂缝图像检测方法[J].智能系统学报,2021,16(2):286-293. DOI: 10.11992/tis.201910004. [9]ZHANG C B, CHANG C C, JAMSHIDI M. Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409. DOI: 10.1111/mice.12500. [10]YU L C, HE S H, LIU X S, et al. Intelligent crack detection and quantification in the concrete bridge: A deep learning-assisted image processing approach[J]. Advances in Civil Engineering, 2022,2022(1): 1813821. DOI: 10.1155/2022/1813821. [11]何金宝,胡秋宝,付志超,等.基于DCGAN和改进YOLOv5s的桥梁表面缺陷检测识别[J].江西师范大学学报(自然科学版),2022,46(6):655-660. DOI: 10.16357/j.cnki.issn1000-5862.2022.06.14. [12]彭雨诺,刘敏,万智,等.基于改进YOLO的双网络桥梁表观病害快速检测算法[J].自动化学报,2022,48(4):1018-1032. DOI: 10.16383/j.aas.c210807. [13]李松,史涛,井方科.改进YOLOv8的道路损伤检测算法[J].计算机工程与应用,2023,59(23):165-174. DOI: 10.3778/j.issn.1002-8331.2306-0205. [14]张彬,周粤川,张敏,等.生成对抗网络改进角度与应用研究综述[J].计算机应用研究,2023,40(3):649-658. DOI: 10.19734/j.issn.1001-3695.2022.08.0410. [15]KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021, 34: 852-863. [16]ZHANG L Z, WEN T, SHI J B. Deep image blending[C]// 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2020: 231-240. DOI: 10.1109/WACV45572.2020.9093632. [17]SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for Low-Resolution images and small objects[C]// Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2023: 443-459. DOI: 10.1007/978-3-031-26409-2_27. [18]YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Los Alamitos, CA: IEEE Computer Society, 2023: 2184-2189. DOI: 10.1109/SMC53992.2023.10394415. [19]WU T Y, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. DOI: 10.1109/TIP.2020.3042065. [20]ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[EB/OL]. (2024-03-28)[2024-07-04]. https://arxiv.org/abs/2304.03198. DOI: 10.48550/arXiv.2304.03198. [21]AZAD R, NIGGEMEIER L, HÜTTEMANN M, et al. Beyond self-attention: deformable large kernel attention for medical image segmentation[C]// 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2024: 1276-1286. DOI: 10.1109/WACV57701.2024.00132. [22]DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 7369-7378. DOI: 10.1109/CVPR46437.2021.00729. [23]WANG W H, DAI J F, CHEN Z, et al. Internimage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 14408-14419. DOI: 10.1109/CVPR52729.2023.01385. [24]吴利刚,陈乐,刘泽鹏,等.基于YOLOv8-ABW的黄花成熟度检测方法[J].农业工程学报,2024,40(13):262-272. DOI: 10.11975/j.issn.1002-6819.202401074. [25]张林鍹,巴音塔娜,曾庆松.基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法[J].农业机械学报,2024,55(1):241-252. [26]WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. (2024-05-23)[2024-07-04]. https://arxiv.org/abs/2405.14458. DOI: 10.48550/arXiv.2405.14458. [27]WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-29)[2024-07-04]. https://arxiv.org/abs/2402.13616. DOI: 10.48550/arXiv.2402.13616. [28]ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2024: 16965-16974. DOI: 10.1109/CVPR52733.2024.01605. [29]XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[EB/OL]. (2023-04-24)[2024-07-04]. https://arxiv.org/abs/2211.15444. DOI: 10.48550/arXiv.2211.15444. |
| [1] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [2] | DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106. |
| [3] | LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100. |
| [4] | LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107. |
| [5] | ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51-61. |
| [6] | CAI Likun, WU Yunbing, CHEN Ganlin, LIU Chongling, LIAO Xiangwen. Category Text Generation Based on Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 79-90. |
| [7] | PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111. |
| [8] | XUE Qiwei, WU Xiru. Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 37-48. |
| [9] | ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46. |
| [10] | BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11. |
| [11] | ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23. |
|
||