Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 72-83.doi: 10.16088/j.issn.1001-6600.2024120101
• Intelligence Information Processing • Previous Articles Next Articles
TANG Liang*, CHEN Bowen, NIU Yisen, MA Ronggeng
| [1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI: 10.1109/CVPR.2016.91. [2]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2. [3]LI B, CHEN Y H, XU H, et al. Fast vehicle detection algorithm based on lightweight YOLO7-tiny[EB/OL]. (2023-04-17)[2024-12-01]. https://arxiv.org/abs/2304.06002. DOI: 10.48550/arXiv.2304.06002. [4]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 580-587. DOI: 10.1109/CVPR.2014.81. [5]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [6]WANG J W, CHEN C, WANG C W. Street sign recognition algorithm based on deep learning[C]// Proceedings of the 2020 3rd International Conference on Image and Graphics Processing. New York: Association for Computing Machinery, 2020: 31-35. DOI: 10.1145/3383812.3383819. [7]李轩,李静,王海燕.复杂气象条件下的交通场景目标检测算法研究[J].计算机仿真,2021,38(2):87-90,105. DOI: 10.3969/j.issn.1006-9348.2021.02.020. [8]LI G F, YANG Y F, QU X D. Deep learning approaches on pedestrian detection in hazy weather[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8889-8899. DOI: 10.1109/TIE.2019.2945295. [9]LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 4780-4788. DOI: 10.1109/ICCV.2017.511. [10]院老虎,翟柯嘉,张泽鹏,等.基于模拟雾天遥感数据集的飞机目标检测研究[J].南京邮电大学学报(自然科学版),2021,41(3):77-84. DOI: 10.14132/j.cnki.1673-5439.2021.03.011. [11]MA Y H, CAI J F, TAO J X, et al. Foggy image detection based on DehazeNet with improved SSD[C]// Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence. New York: Association for Computing Machinery, 2021: 82-86. DOI: 10.1145/3461353.3461363. [12]HAN X F. Modified cascade RCNN based on contextual information for vehicle detection[J]. Sensing and Imaging, 2021, 22(1): 19. DOI: 10.1007/s11220-021-00342-6. [13]董丽丽,丁畅,许文海.基于直方图均衡化图像增强的两种改进方法[J].电子学报,2018,46(10):2367-2375. DOI: 10.3969/j.issn.0372-2112.2018.10.009. [14]RAIKWAR S C, TAPASWI S, CHAKRABORTY S. Bounding function for fast computation of transmission in single image dehazing[J]. Multimedia Tools and Applications, 2022, 81(4): 5349-5372. DOI: 10.1007/s11042-021-11752-9. [15]JU M Y, DING C, REN W Q, et al. IDE: image dehazing and exposure using an enhanced atmospheric scattering model[J]. IEEE Transactions on Image Processing, 2021, 30: 2180-2192. DOI: 10.1109/TIP.2021.3050643. [16]HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. DOI: 10.1109/TPAMI.2010.168. [17]LI S Y, LIN J, YANG X, et al. BPFD-Net: enhanced dehazing model based on pix2pix framework for single image[J]. Machine Vision and Applications, 2021, 32(6): 124. DOI: 10.1007/s00138-021-01248-9. [18]陈清江,张雪.混合残差学习与导向滤波算法在图像去雾中的应用[J].光学精密工程,2019,27(12):2702-2712. DOI: 10.3788/OPE.20192712.2702. [19]CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 12021-12031. DOI: 10.1109/CVPR52729.2023.01157. [20]LIU G L, SHIH K J, WANG T C, et al. Partial convolution based padding[EB/OL]. (2018-11-28)[2024-12-01]. https://arxiv.org/abs/1811.11718. DOI: 10.48550/arXiv.1811.11718. [21]孙锦,尹明锋,谢涛,等.基于多尺度特征融合的雾天目标检测方法[J].激光杂志,2024,45(6):106-113. DOI: 10.14016/j.cnki.jgzz.2024.06.106. [22]IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2024-12-01]. https://arxiv.org/abs/1502.03167. DOI: 10.48550/arXiv.1502.03167. [23]CHEN Y H, TANG X, QI X B, et al. Learning graph normalization for graph neural networks[J]. Neurocomputing, 2022, 493: 613-625. DOI: 10.1016/j.neucom.2022.01.003. [24]娄铮铮,张欣,胡世哲,等.一种基于YOLOX_s的雾天场景目标检测方法[J].计算机科学,2024,51(7):206-213. DOI: 10.11896/jsjkx.230400086. [25]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [26]XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5987-5995. DOI: 10.1109/CVPR.2017.634. [27]SZEGEDYC, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[EB/OL]. (2016-08-23)[2024-12-01]. https://arxiv.org/abs/1602.07261. DOI: 10.48550/arXiv.1602.07261. [28]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [29]YANG Z D, LI Z, SHAO M Q, et al. Masked generative distillation[C]// Computer Vision-ECCV 2022. Cham: Springer, 2022: 53-69. DOI: 10.1007/978-3-031-20083-0_4. [30]院老虎,常玉坤,刘家夫.基于改进YOLOv5s的雾天场景车辆检测方法[J].郑州大学学报(工学版),2023,44(3): 35-41. DOI: 10.13705/j.issn.1671-6833.2023.03.005. |
| [1] | GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69. |
| [2] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [3] | TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79-90. |
| [4] | LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107. |
| [5] | ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110. |
| [6] | HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134. |
|
||