Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 79-90.doi: 10.16088/j.issn.1001-6600.2023120303

Previous Articles     Next Articles

Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny

TU Zhirong1, LING Haiying1, LI Guo1,2, LU Shenglian1,2*, QIAN Tingting3*, CHEN Ming1,2   

  1. 1. Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education(Guangxi Normal University), Guilin Guangxi 541004, China;
    2. College of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    3. Institutes of Agricultural Science and Technology Information, Shanghai Academy of Agriculture Sciences, Shanghai 201403, China
  • Received:2023-12-03 Revised:2024-03-03 Online:2024-09-25 Published:2024-10-11

Abstract: Accurate and fast detection of fruits in orchards is one of the key tasks for intelligent agricultural approaches,such as fruit yield prediction and automated harvesting. A lightweight detection method based on an improved YOLOv7-Tiny is proposed in this paper to address the current issue of large parameters and FLOPs in object detection models. The method is specifically designed for detecting passion fruit in complex orchard environments,aiming to enhance real-time applicability on embedded devices. Firstly,the Omni-dimensional Dynamic Convolution (ODConv) is employed in the backbone network to enhance its feature extraction capability,thereby increasing the mean Average Precision (mAP) by 2 percentage points. Furthermore,to reduce the parameters and FLOPs of the neck network,the GMConv lightweight module is proposed by integrating the GhostNet network and the MobileOne network. The parameters and FLOPs have decreased by approximately 30% and 20%,respectively,and the model's FPS has increased by around 50 frame/s. Experimental results on the passion fruit dataset reveal that,compared with YOLOv7-Tiny,the parameters and FLOPs of the improved algorithm have decreased by 32.1% and 25.4% respectively,while the mAP has increased by 2.6 percentage points. With the reduction of FLOPs and parameters,the improved algorithm further enhances detection accuracy,offering theoretical research and technical support for deployment on embedded devices.

Key words: object detection, YOLOv7-Tiny, passion fruit, lightweight network, GMConv module, ODConv

CLC Number:  TP391.41
[1] 龙燕,杨智优,何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法[J]. 农业工程学报,2023,39(14):191-199. DOI: 10.11975/j.issn.1002-6819.202305069.
[2] GAO F F,FANG W T,SUN X M,et al. A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard[J]. Computers and Electronics in Agriculture,2022,197:107000. DOI: 10.1016/j.compag.2022.107000.
[3] 王立舒,秦铭霞,雷洁雅,等. 基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J]. 农业工程学报,2021,37(18):170-178. DOI: 10.11975/j.issn.1002-6819.2021.18.020.
[4] 吕佳,李帅军,曾梦瑶,等. 基于半监督SPM-YOLOv5的套袋柑橘检测算法[J]. 农业工程学报,2022,38(18):204-211. DOI: 10.11975/j.issn.1002-6819.2022.18.022.
[5] LINKER R,COHEN O,NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J].Computers and Electronics in Agriculture,2012,81:45-57. DOI: 10.1016/j.compag.2011.11.007.
[6] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. DOI: 10.1038/nature14539.
[7] 张文龙,南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版),2022,40(2):49-57. DOI: 10.16088/j.issn.1001-6600.2021081303.
[8] 陈文康,陆声链,刘冰浩,等. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版),2021,39(5):134-146. DOI: 10.16088/j.issn.1001-6600.2020111404.
[9] 郭希岳,李劲松,郑立华,等. 利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报,2022,38(15):186-194. DOI: 10.11975/j.issn.1002-6819.2022.15.020.
[10] 张秀花,静茂凯,袁永伟,等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报,2022,38(1):221-229. DOI: 10.11975/j.issn.1002-6819.2022.01.025.
[11] TU S Q,PANG J,LIU H F,et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture,2020,21(5):1072-1091. DOI: 10.1007/s11119-020-09709-3.
[12] SUN J,HE X F,GE X,et al. Detection of key organs in tomato based on deep migration learning in a complex background[J]. Agriculture,2018,8(12):196. DOI: 10.3390/agriculture8120196.
[13] 涂淑琴,黄健,林跃庭,等. 基于改进Faster R-CNN的百香果自动检测[J]. 实验室研究与探索,2021,40(11):32-37. DOI: 10.19927/j.cnki.syyt.2021.11.008.
[14] 唐熔钗,伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版),2020,38(6):32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004.
[15] LU S L,CHEN W K,ZHANG X,et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture,2022,193:106696. DOI: 10.1016/j.compag.2022.106696.
[16] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2023-11-29]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767.
[17] BOCHKOVSKIY A,WANG C Y,LIAO H Y M,et al. YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-11-29]. https://arxiv.org/abs/2004.10934. DOI: 10.48550/arXiv.2004.10934.
[18] GE Z,LIU S T,WANG F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2023-11-29]. https://arxiv.org/abs/2107.08430. DOI: 10.48550/arXiv.2107.08430.
[19] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[20] OU J J,ZHANG R H,LI X M,et al. Research and explainable analysis of a real-time passion fruit detection model based on FSOne-YOLOv7[J]. Agronomy,2023,13(8):1993. DOI: 10.3390/agronomy13081993.
[21] 孙俊,吴兆祺,贾忆琳,等. 基于改进YOLOv5s的果园环境葡萄检测[J]. 农业工程学报,2023,39(18):192-200. DOI: 10.11975/j.issn.1002-6819.202306135.
[22] JI W,PAN Y,XU B,et al. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX[J]. Agriculture,2022,12(6):856. DOI: 10.3390/agriculture12060856.
[23] 罗志聪,李鹏博,宋飞宇,等. 嵌入式设备的轻量化百香果检测模型[J]. 农业机械学报,2022,53(11):262-269,322. DOI: 10.6041/j.issn.1000-1298.2022.11.026.
[24] 张日红,区建爽,李小敏,等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报,2023,39(4):135-143. DOI: 10.11975/j.issn.1002-6819.202210133.
[25] PONGENER A,SAGAR V,PAL R K,et al. Physiological and quality changes during postharvest ripening of purple passion fruit (Passiflora edulis Sims)[J]. Fruits,2014,69(1):19-30. DOI: 10.1051/fruits/2013097.
[26] LI C,ZHOU A J,YAO A B. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16)[2023-11-29]. https://arxiv.org/abs/2209.07947. DOI: 10.48550/arXiv.2209.07947.
[27] HAN K,WANG Y H,TIAN Q,et al. GhostNet:more features from cheap operations[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:1577-1586. DOI: 10.1109/CVPR42600.2020.00165.
[28] VASU P K A,GABRIEL J,ZHU J,et al. MobileOne:an improved one millisecond mobile backbone[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7907-7917. DOI: 10.1109/CVPR52729.2023.00764.
[29] MA N N,ZHANG X Y,ZHENG H T,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C] // Computer Vision-ECCV 2018:LNCS Volume 11218. Cham:Springer Nature Switzerland AG,2018:122-138. DOI: 10.1007/978-3-030-01264-9_8.
[30] HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos,CA:IEEE Computer Society,2019:1314-1324. DOI: 10.1109/ICCV.2019.00140.
[31] YANG B,BENDER G,LE Q V,et al. CondConv:conditionally parameterized convolutions for efficient inference[C] //Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Red Hook,NY:Curran Associates Inc.,2019:1307-1318.
[32] CHEN Y P,DAI X Y,LIU M C,et al. Dynamic convolution:attention over convolution kernels[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:11027-11036. DOI: 10.1109/CVPR42600.2020.01104.
[33] LI Y S,CHEN Y P,DAI X Y,et al. Revisiting dynamic convolution via matrix decomposition[EB/OL]. (2021-03-15)[2023-11-29]. https://arxiv.org/abs/2103.08756. DOI: 10.48550/arXiv.2103.08756.
[1] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107.
[2] ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110.
[3] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[4] LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90.
[5] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91 -100 .