Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 1-10.doi: 10.16088/j.issn.1001-6600.2023111304
LI Wenbo1, DONG Qing2*, LIU Chao2, ZHANG Qi1
[1] ZHANG Y J, HUANG L S, ZHOU X, et al. Characteristics and workload of pediatricians in China[J]. Pediatrics, 2019, 144(1): e20183532. DOI: 10.1542/peds.2018-3532. [2] LIANG H Y, TSUI B Y, NI H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence[J]. Nature Medicine, 2019, 25(3): 433-438. DOI: 10.1038/s41591-018-0335-9. [3] BAKER A, PEROV Y, MIDDLETON K, et al. A comparison of artificial intelligence and human doctors for the purpose of triage and diagnosis[J]. Frontiers in Artificial Intelligence, 2020, 3: 543405. DOI: 10.3389/frai.2020.543405. [4] 魏鹏飞, 曾碧, 汪明慧, 等. 基于深度学习的口语理解联合建模算法综述[J]. 软件学报, 2022, 33(11): 4192-4216. DOI: 10.13328/j.cnki.jos.006385. [5] 陈燕, 龚庆悦, 戴彩艳. 基于句法抽取与图结构编码的患者问询意图识别[J]. 计算机与数字工程, 2021, 49(11): 2276-2281, 2334. DOI: 10.3969/j.issn.1672-9722.2021.11.020. [6] 王志明, 郑凯. 基于BERT的中文医疗问答系统[J]. 计算机系统应用, 2023, 32(6): 115-120. DOI: 10.15888/j.cnki.csa.009140. [7] 余慧, 冯旭鹏, 刘利军, 等. 聊天机器人中用户就医意图识别方法[J]. 计算机应用, 2018, 38(8): 2170-2174. DOI: 10.11772/j.issn.1001-9081.2018010190. [8] 王宇亮, 杨观赐, 罗可欣. 基于意图—槽位注意机制的医疗咨询意图理解与实体抽取算法[J]. 计算机应用研究, 2023, 40(5): 1402-1409. DOI: 10.19734/j.issn.1001-3695.2022.11.0547. [9] FAN J F, WANG M L, LI C L, et al. Intent-slot correlation modeling for joint intent prediction and slot filling[J]. Journal of Computer Science and Technology, 2022, 37(2): 309-319. DOI: 10.1007/s11390-020-0326-4. [10] 侯丽仙, 李艳玲, 林民, 等. 融合多约束条件的意图和语义槽填充联合识别[J]. 计算机科学与探索, 2020, 14(9): 1545-1553. DOI: 10.3778/j.issn.1673-9418.1909009. [11] 马天宇, 覃俊, 刘晶, 等. 基于BERT的意图分类与槽填充联合方法[J]. 中文信息学报, 2022, 36(8): 127-134. DOI: 10.3969/j.issn.1003-0077.2022.08.016. [12] 马常霞, 张晨. 中文对话理解中基于预训练的意图分类和槽填充联合模型[J]. 山东大学学报(工学版), 2020, 50(6): 68-75. DOI: 10.6040/j.issn.1672-3961.0.2020.236. [13] 周天益, 范永全, 杜亚军, 等. 基于细粒度信息集成的意图识别和槽填充联合模型[J]. 计算机应用研究, 2023, 40(9): 2669-2673. DOI: 10.19734/j.issn.1001-3695.2023.01.0015. [14] 孟佳娜, 单明, 孙世昶, 等. 融入历史信息的多轮对话意图识别[J]. 大连民族大学学报, 2023, 25(3): 244-249. DOI: 10.3969/j.issn.1009-315X.2023.03.009. [15] WEI Z Y, LIU Q L, PENG B L, et al. Task-oriented dialogue system for automatic diagnosis[C] //Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 201-207. DOI: 10.18653/v1/P18-2033. [16] CHEN J Y, LI D F, CHEN Q C, et al. Diaformer: automatic diagnosis via symptoms sequence generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4): 4432-4440. DOI: 10.1609/aaai.v36i4.20365. [17] XU L, ZHOU Q X, GONG K, et al. End-to-end knowledge-routed relational dialogue system for automatic diagnosis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7346-7353. DOI: 10.1609/aaai.v33i01.33017346. [18] LIN X Z, HE X H, CHEN Q, et al. Enhancing dialogue symptom diagnosis with global attention and symptom graph[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 5033-5042. DOI: 10.18653/v1/D19-1508. [19] ZHONG C, LIAO K G E, CHEN W, et al. Hierarchical reinforcement learning for automatic disease diagnosis[J]. Bioinformatics, 2022, 38(16): 3995-4001. DOI: 10.1093/bioinformatics/btac408. [20] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C] //2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2006: 1735-1742. DOI: 10.1109/CVPR.2006.100. [21] BOSE A J, LING H, CAO Y S. Adversarial contrastive estimation[C] //Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 1021-1032. DOI: 10.18653/v1/P18-1094. [22] YANG Z H, CHENG Y, LIU Y, et al. Reducing word omission errors in neural machine translation: a contrastive learning approach[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 6191-6196. DOI: 10.18653/v1/P19-1623. [23] YU Y, ZUO S M, JIANG H M, et al. Fine-tuning pre-trained language model with weak supervision: a contrastive-regularized self-training approach[C] //Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2021: 1063-1077. DOI: 10.18653/v1/2021.naacl-main.84. [24] GAO T Y, YAO X C, CHEN D Q. SimCSE: simple contrastive learning of sentence embeddings[C] //Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2021: 6894-6910. DOI: 10.18653/v1/2021.emnlp-main.552. [25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. [26] 向卓元, 陈浩, 王倩, 等. 面向任务型对话的小样本语言理解模型研究[J]. 数据分析与知识发现, 2023, 7(9): 64-77. DOI: 10.11925/infotech.2096-3467.2022.0825. [27] GE W F, HUANG W L, DONG D K, et al. Deep metric learning with hierarchical triplet loss[C] //Computer Vision-ECCV 2018: LNCS Volume 11210. Cham: Springer, 2018: 272-288. DOI: 10.1007/978-3-030-01231-1_17. [28] 姚倩媛.医疗对话文本意图识别和槽填充联合模型研究[D]. 上海:复旦大学,2021. [29] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C] //Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2017: 427-431. [30] DYER C, BALLESTEROS M, LING W, et al. Transition-based dependency parsing with stack long short-term memory[C] //Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2015: 334-343. DOI: 10.3115/v1/P15-1033. [31] LIU B, LANE I. Attention-based recurrent neural network models for joint intent detection and slot filling[C] //Proceedings of the Interspeech 2016. Red Hook, NY: Curran Associates, Inc., 2016: 685-689. DOI: 10.21437/Interspeech.2016-1352. [32] GOO C W, GAO G, HSU Y K, et al. Slot-gated modeling for joint slot filling and intent prediction[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2018: 753-757. DOI: 10.18653/v1/N18-2118. [33] QIN L B, CHE W X, LI Y M, et al. A stack-propagation framework with token-level intent detection for spoken language understanding[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 2078-2087. DOI: 10.18653/v1/D19-1214. |
[1] | WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103. |
|