Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 28-38.doi: 10.16088/j.issn.1001-6600.2024040202

Previous Articles     Next Articles

Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation

ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun*   

  1. School of Chemical Engineering, Xiangtan University, Xiangtan Hunan 411105, China
  • Received:2024-04-02 Revised:2024-04-14 Online:2024-09-25 Published:2024-10-11

Abstract: Furfural as an important biomass-derived platform molecule can be selectively hydrogenated over aldehyde group into other chemicals under the assistance of catalysts. Metal-organic framework (MOF) is a kind of crystalline porous material with periodic networks assembled by metal centers/clusters and ligands,which is often used as carrier and sources or directly used as catalyst for furfural hydrogenation with high performance. This paper summarizes design principle of MOF-based catalysts and research progress in selective furfural hydrogenation,and the critical factors and mechanisms for the reactions are analyzed. Challenges for MOF-based catalysts in hydrogenation are also analyzed and the effective acidic site regulation is a key issue,providing a reference for future synthesis of MOF-based catalysts and their furfural hydrogenation applications.

Key words: furfural, metal-organic frameworks, catalysts, biomass, hydrogenation

CLC Number:  TQ127.11
[1] 张军,李丹妮,袁浩然,等.生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J].燃料化学学报,2021,49(12):1752-1767. DOI: 10.1016/S1872-5813(21)60135-4.
[2] WANG D W, LUO M Y, YUE L H, et al. Co-embedded N-doped hierarchical porous biocarbons: facile synthesis and used as highly efficient catalysts for levulinic acid hydrogenation[J]. Fuel, 2022, 329: 125364. DOI: 10.1016/j.fuel.2022.125364.
[3] 夏海虹,周铭昊,陈昌洲,等.水介质下金属基催化剂催化糠醛加氢的研究进展[J].生物质化学工程,2022,56(4):39-48. DOI: 10.3969/j.issn.1673-5854.2022.04.006.
[4] 白伟欣,李丹辉,高建平,等.糠醛加氢合成环戊酮研究进展[J].精细石油化工,2023,40(3):58-63. DOI:10.20075/j.cnki.issn.1003-9384.2023.03.014.
[5] KUMARAVEL S, DURAI M, KALIYAMOORTHY S, et al. Ru nanoparticles supported on mesoporous Al-SBA-15 catalysts for highly selective hydrogenation of furfural to furfuryl alcohol[J]. ChemistrySelect, 2023, 8(34): e202301787. DOI: 10.1002/slct.202301787.
[6] GAO G, REMÓN J, JIANG Z C, et al. Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst[J]. Applied Catalysis B: Environmental, 2022, 309: 121260. DOI: 10.1016/j.apcatb.2022.121260.
[7] WANG Y, LIU S S, GUO Q R, et al. Ni@C@CNT catalyst derived from CNT doped Ni-MOF for furfural hydrogenation to tetrahydrofurfuryl alcohol[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(2): e2739. DOI: 10.1002/apj.2739.
[8] LIN W S, CHENG Y, LIU H, et al. Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber[J]. Fuel, 2023, 331, Part 1: 125792. DOI: 10.1016/j.fuel.2022.125792.
[9] LIU S H, TU R, LIANG K L, et al. Catalytic transfer hydrogenation of furfural via metal-organic framework-derived high entropy alloy catalysts at room pressure[J]. Fuel Processing Technology, 2023, 252: 107976. DOI: 10.1016/j.fuproc.2023.107976.
[10] ZHU L Y, XIA X X, YU H Y, et al. Catalytic hydrogenation of furfural over UiO-66-NH2-derived Ru-based catalysts: precursor coordination structure for enhanced catalysis[J]. ChemistrySelect, 2023, 8(30): e202301155. DOI: 10.1002/slct.202301155.
[11] ZHAO Y, SONG Z X, LI X, et al. Metal organic frameworks for energy storage and conversion[J]. Energy Storage Materials, 2016, 2: 35-62. DOI: 10.1016/j.ensm.2015.11.005.
[12] XIA W, MAHMOOD A, ZOU R Q, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015, 8(7): 1837-1866. DOI: 10.1039/C5EE00762C.
[13] WANG J, WANG Y L, HU H B, et al. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives[J]. Nanoscale, 2020, 12(7): 4238-4268. DOI: 10.1039/C9NR09697C.
[14] 程蕾,闫普选,杜博豪,等.MOF-2的水相合成及其热稳定和介电性能研究[J].广西师范大学学报(自然科学版),2023,41(5):86-95. DOI:10.16088/j.issn.1001-6600.2022111401.
[15] FUJITA M, JUNG KWON Y, WASHIZU S, et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II)and 4, 4'-Bipyridine[J]. Journal of the American Chemical Society, 2002, 116(3): 1151-1152. DOI: 10.1021/ja00082a055.
[16] 杨文,苏迎杰,侯东睿,等.CuO/MIL(Cr,Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究[J].广西师范大学学报(自然科学版),2023,41(3):210-220. DOI:10.16088/j.issn.1001-6600.2022050903.
[17] FU Q J, JIANG H M, WANG Y J, et al. Recent advances in metal-organic framework based heterogeneous catalysts for furfural hydrogenation reactions[J]. Materials Chemistry Frontiers, 2023, 7(4): 628-642. DOI: 10.1039/D2QM01181F.
[18] 祁梦园,吴三民,范宜凯,等.金属有机骨架材料(MOFs)基催化剂在加氢反应中的研究进展[J].工业催化,2023,31(3):25-30. DOI: 10.3969/j.issn.1008-1143.2023.03.003.
[19] 陈芝杰,陈俊英,李映伟.金属有机骨架基催化剂在加氢反应中的应用[J].催化学报,2017,38(7):1108-1126. DOI:10.1016/S1872-2067(17)62852-3.
[20] BIEMMI E, CHRISTIAN S, STOCK N, et al. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1[J]. Microporous and Mesoporous Materials, 2009, 117(1/2): 111-117. DOI: 10.1016/j.micromeso.2008.06.040.
[21] LONG Y, SONG S Y, LI J, et al. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect[J]. ACS Catalysis, 2018, 8(9): 8506-8512. DOI: 10.1021/acscatal.8b01851.
[22] 韩易潼,刘民,李克艳,等.高稳定性金属有机骨架UiO-66的合成与应用[J].应用化学,2016,33(4):367-378. DOI:10.11944/j.issn.1000-0518.2016.04.150439.
[23] 申海玉,赵华华,杨建,等.MOFs在不饱和醛选择加氢中的应用研究进展[J].分子催化,2021,35(6):571-582. DOI:10.16084/j.issn.1001-3555.2021.06.008.
[24] FANG R Q, CHEN L Y, SHEN Z R, et al. Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts[J]. Catalysis Today, 2021, 368: 217-223. DOI: 10.1016/j.cattod.2020.03.019.
[25] LESTARI W W, SUHARBIANSAH R S R, LARASATI L, et al. A zirconium(IV)-based metal-organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol[J]. Chemical Papers, 2022, 76(8): 4719-4731. DOI: 10.1007/s11696-022-02193-1.
[26] YANG Q P, GAO D W, LI C S, et al. Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation[J]. Applied Catalysis B: Environmental, 2023, 328: 122458. DOI: 10.1016/j.apcatb.2023.122458.
[27] GONG W B, LIN Y, CHEN C, et al. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds[J]. Advanced Materials, 2019, 31(11): e1808341. DOI: 10.1002/adma.201808341.
[28] LI Z F, SHEN Y, ZHANG Q, et al. Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol[J]. Molecular Catalysis, 2022, 518: 112092. DOI: 10.1016/j.mcat.2021.112092.
[29] YANG X, LIU W, TAN F H, et al. A robust strategy of homogeneously hybridizing silica and Cu3(BTC)2 to in situ synthesize highly dispersed copper catalyst for furfural hydrogenation[J]. Applied Catalysis A: General, 2020, 596: 117518. DOI: 10.1016/j.apcata.2020.117518.
[30] WANG Y, MIAO Y N, LI S, et al. Metal-organic frameworks derived bimetallic Cu-Co catalyst for efficient and selective hydrogenation of biomass-derived furfural to furfuryl alcohol[J]. Molecular Catalysis, 2017, 436: 128-137. DOI: 10.1016/j.mcat.2017.04.018.
[31] HUANG L, HAO F, LV Y, et al. MOF-derived well-structured bimetallic catalyst for highly selective conversion of furfural[J]. Fuel, 2021, 289: 119910. DOI: 10.1016/j.fuel.2020.119910.
[32] LI Z F, SHEN Y, CUI W G, et al. MOF derived non-noble metal catalysts to control the distribution of furfural selective hydrogenation products[J]. Molecular Catalysis, 2021, 513: 111824. DOI: 10.1016/j.mcat.2021.111824.
[33] LIU W, HUA J Y, SU S Y, et al. A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction[J]. Molecular Catalysis, 2023, 551: 113647. DOI: 10.1016/j.mcat.2023.113647.
[34] ZAHID M, LI J, ISMAIL A, et al. Platinum and cobalt intermetallic particles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and Lewis acid sites[J]. Catalysis Science & Technology, 2021, 11(7): 2433-2445. DOI: 10.1039/D0CY02082F.
[35] PU S Y, SUN L, YANG C Y, et al. Cu-doped CoZn@NC promotes catalytic activity of furfural hydrogenation at low temperature: regulation of copper[J]. Molecular Catalysis, 2024, 559: 114084. DOI: 10.1016/j.mcat.2024.114084.
[36] FAN Y F, LI S J, WANG Y, et al. Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol[J]. Nanoscale, 2020, 12(35): 18296-18304. DOI: 10.1039/D0NR04098C.
[37] 范宜凯,邬娇娇,徐向亚,等.金属有机骨架(MOFs)衍生材料及其在催化领域的研究进展[J].工业催化,2024,32(1):14-19. DOI:10.3969/j.issn.1008-1143.2024.01.002.
[38] ZHANG B Y, PEI Y C, MALIGAL-GANESH R, et al. Influence of Sn on stability and selectivity of Pt-Sn@UiO-66-NH2 in furfural hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17495-17501. DOI: 10.1021/acs.iecr.0c01336.
[39] YUAN Q Q, ZHANG D M, HAANDEL L V, et al. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs[J]. Journal of Molecular Catalysis A: Chemical, 2015, 406: 58-64. DOI: 10.1016/j.molcata.2015.05.015.
[40] NAIK S S, THEERTHAGIRI J, MIN A, et al. Selective furfural conversion via parallel hydrogenation-oxidation on MOF-derived CuO/RuO2/C electrocatalysts via pulsed laser[J]. Applied Catalysis B: Environmental, 2023, 339: 123164. DOI: 10.1016/j.apcatb.2023.123164.
[41] XIA X X, GAO Y X, LI P, et al. Direct and transfer hydrogenation of furfural over MOF-derived Pd-Cu@C catalysts[J]. The Canadian Journal of Chemical Engineering, 2023, 101(11): 6482-6493. DOI: 10.1002/cjce.24924.
[42] CHEN K, LING J L, WU C D. In situ generation and stabilization of accessible Cu/Cu2O heterojunctions inside organic frameworks for highly efficient catalysis[J]. Angewandte Chemie International Edition, 2020, 59(5): 1925-1931. DOI: 10.1002/anie.201913811.
[43] MENG X Y, YANG Y S, CHEN L F, et al. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts[J]. ACS Catalysis, 2019, 9(5): 4226-4235. DOI: 10.1021/acscatal.9b00238.
[44] WANG C H, WANG A J, YU Z Q, et al. Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66[J]. Catalysis Communications, 2021, 148: 106178. DOI: 10.1016/j.catcom.2020.106178.
[45] PENDEM S, BOLLA S R, MORGAN D J, et al. Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol[J]. Dalton Transactions, 2019, 48(24): 8791-8802. DOI: 10.1039/C9DT01190K.
[46] SU Y P, CHEN C, ZHU X G, et al. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. Dalton Transactions, 2017, 46(19): 6358-6365. DOI: 10.1039/C7DT00628D.
[47] TANG F Y, WANG L Q, DESSIE WALLE M, et al. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural[J]. Journal of Catalysis, 2020, 383: 172-180. DOI: 10.1016/j.jcat.2020.01.019.
[48] XIA H H, CHEN C Z, LIU P, et al. Selective hydrogenation of furfural for high-value chemicals: effect of catalysts and temperature[J]. Sustainable Energy & Fuels, 2020, 4(11): 5709-5720. DOI: 10.1039/D0SE01090A.
[49] FU Q J, YAN L T, YANG L Z, et al. Synthesis of Quasi-MOFs featuring special hub-and-spoke channels and surface NiO species for enhanced total hydrogenation of furfural[J]. Materials Advances, 2024, 5(3): 1106-1118. DOI: 10.1039/D3MA00938F.
[50] FU Q J, YAN L T, LIU D D, et al. Highly-dispersed surface NiO species and exposed Ni(200) facets facilitating activation of furan ring for high-efficiency total hydrogenation of furfural[J]. Applied Catalysis B: Environmental, 2024, 343: 123501. DOI: 10.1016/j.apcatb.2023.123501.
[51] 殷冬冬, 任航星, 李闯, 等.MIL-101(Cr)-NH2负载Pd低温催化糠醛高选择性加氢生成四氢糠醇[J]. 催化学报,2018, 39(2):319-326. DOI:10.1016/S1872-2067(18)63009-8.
[52] SU Y P, LI Z Y, ZHOU H J, et al. Ni/carbon aerogels derived from water induced self-assembly of Ni-MOF for adsorption and catalytic conversion of oily wastewater[J]. Chemical Engineering Journal, 2020, 402: 126205. DOI: 10.1016/j.cej.2020.126205.
[53] 杨静,石秋杰.糠醛加氢制2-甲基呋喃催化剂的研究进展[J].化工时刊,2008,22(4):62-65. DOI:10.3969/j.issn.1002-154X.2008.04.018.
[54] ZHOU P, CHEN Y, LUAN P, et al. Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst under mild pH conditions dagger[J]. Green Chemistry, 2021, 23(8): 3028-3038. DOI: 10.1039/D0GC03999C.
[55] LEE J G, YOON S, YANG E, et al. Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation[J]. Journal of Catalysis, 2020, 392: 302-312. DOI: 10.1016/j.jcat.2020.10.014.
[56] HUANG L, WANG L Q, ZHANG Z H, et al. Understanding the promotional effects of trace doped Zn in Co/NC for efficient one-pot catalytic conversion of furfural to 2-methyl-tetrahydrofuran[J]. Journal of Energy Chemistry, 2022, 71: 225-233. DOI: 10.1016/j.jechem.2022.03.031.
[57] DOU S X, MA L G, DONG Y Y, et al. Hydrodeoxygenation of furfural to 2-methylfuran over Cu-Co confined by hollow carbon cage catalyst enhanced by optimized charge transfer and alloy structure[J]. Journal of Colloid and Interface Science, 2024, 663: 345-357. DOI: 10.1016/j.jcis.2024.02.157.
[58] KOLEY P, CHANDRA SHIT S, JOSEPH B, et al. Leveraging Cu/CuFe2O4-catalyzed biomass-derived furfural hydrodeoxygenation: a nanoscale metal-organic-framework template is the prime key[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21682-21700. DOI: 10.1021/acsami.0c03683.
[59] ZHANG H L, ZHOU X M, LIU L X, et al. Assembling Co clusters via nanosized ZIF-67 sprouted from CoAl-LDH nanoflower for selective hydrogenation[J]. Applied Catalysis B: Environmental, 2023, 338: 123026. DOI: 10.1016/j.apcatb.2023.123026.
[1] ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30-43.
[2] HU Lening, LI Shuangli, LI Yang, WEI Yizhuang, ZHOU Jinling, SU Yirong, DENG Hua. Effect of Improved Calcium Peroxide on Organic Carbon Mineralization in Gleyed Paddy Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 158-169.
[3] LI Yufeng, QIN Jiashuang, MA Jiangming, YANG Zhangqi, LI Mingjin, LU Shaohao, SONG Zunrong. Establishment of Above-ground Biomass Model and Distribution Characteristics of Pinus massoniana Plantations in Southern Subtropical [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 170-180.
[4] SONG Zunrong, QIN Jiashuang, LI Mingjin, MA Jiangming, ZHONG Fengyue, YANG Zhangqi, YAN Peidong. Study on Root Biomass of Pinus massoniana Plantations in Subtropical China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 149-156.
[5] MA Jiang-ming, LIU Shi-rong, LIU Xing-liang. Root Biomass in the Restoration Process of Subalpine Dark Coniferous Forests in Western Sichuan,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[6] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[7] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[8] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[9] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .
[10] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91 -100 .