Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 158-169.doi: 10.16088/j.issn.1001-6600.2020092402

Previous Articles     Next Articles

Effect of Improved Calcium Peroxide on Organic Carbon Mineralization in Gleyed Paddy Soil

HU Lening1,2, LI Shuangli1,2, LI Yang3, WEI Yizhuang1,2, ZHOU Jinling4, SU Yirong4, DENG Hua1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Guangxi Zhuang Autonomous Region Academy of Environmental Protection Science, Nanning Guangxi 530022, China;
    4. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China
  • Revised:2020-12-15 Online:2021-07-25 Published:2021-07-23

Abstract: In order to explore the role of modified calcium peroxide (CaO2) in the process of organic carbon mineralization in gleyed paddy soil, CaO2 was selected as raw material and coated with ethyl cellulose dissolved in ethanol to prepare granulated calcium peroxide (GAO), set GAO and calcium oxide (CAO, containing 95.0% of CaO mass fraction), calcium peroxide (PAO, containing 75% of CaO2 mass fraction) 3 substances each with 3 different oxygen content concentrations (low concentration 0.011 g/kg, medium concentration 0.111 g/kg and high concentration 1.111 g/kg). At the same time, no substance was added as a blank control (CK), and the method of indoor cultivation was used to study and analyze its effect on the organic carbon mineralization of cultivable paddy soil, the influence of dissolved organic carbon (DOC) and microbial biomass carbon (MBC). The results showed that under the condition of high oxygen concentration, after the incubation period, PAO and GAO inhibited the CO2 emission from the cultivating paddy soil compared with CK and CAO. The cumulative CO2 emission from the soil treated with PAO were reduced by 50.86% and 46.33% compared with CK and CAO treatments, respectively, the cumulative CO2 emissions of soil treated with GAO were reduced by 22.49% and 15.35% compared with CK and CAO treatments, respectively. Compared with CK, the addition of CAO, PAO, and GAO promoted CH4 emissions from cultivable paddy soil. Its cumulative CH4 emissions are 2.07 times, 1.22 times, and 1.10 times that of CK treatment, respectively. Compared with CK treatment, the addition of medium and high concentrations of oxidants significantly increased the content of MBC and DOC in cultivable paddy soil, and the addition of GAO delayed the peak period of soil MBC content, indicating that GAO is due to its special coating effectively reduces the oxygen release rate of the oxidant, and can still effectively release oxygen in the later stage of the culture. This study shows that the improved oxidant GAO has a good application potential in improving the microbial activity of cultivable paddy soil and promoting the turnover of organic carbon.

Key words: gleyed paddy soil, oxidant, greenhouse gases, organic carbon, mineralization, microbial biomass carbon

CLC Number: 

  • S153.6
[1]BRAMMER H, BRINKMAN R. Surface-water gley soils in Bangladesh: environment, landforms and soil morphology[J]. Geoderma, 1977, 17(2): 91-109. DOI:10.1016/0016-7061(77)90043-X.
[2]LIN Y S, LIN Y W, WANG Y, et al. Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan-Hukou Tableland, Northwestern Taiwan[J]. Geomorphology, 2007, 90(1/2): 36-54. DOI:10.1016/j.geomorph.2007.01.013.
[3]侯红乾, 冀建华, 刘秀梅, 等. 土壤改良剂对鄱阳湖区潜育性稻田的改良作用研究[J]. 土壤通报, 2016, 47(6): 1448-1454. DOI:10.19336/j.cnki.trtb.2016.06.25.
[4]YANG Y, WANG Z C, XIE Y Q, et al. Impacts of groundwater depth on regional scale soil gleyization under changing climate in the Poyang Lake Basin, China[J]. Journal of Hydrology, 2019, 568: 501-516. DOI:10.1016/j.jhydrol.2018.11.006.
[5]COUTTS M P. Components of tree stability in Sitka spruce on peaty gley soil[J]. Forestry, 1986, 59(2): 173-197. DOI:10.1093/forestry/59.2.173.
[6]杨钙仁, 童成立, 肖和艾, 等. 水分控制下的湿地沉积物氧化还原电位及其对有机碳矿化的影响[J]. 环境科学, 2009, 30(8): 2381-2386. DOI:10.13227/j.hjkx.2009.08.049.
[7]ALLER R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331-345. DOI: 10.1016/0009-2541(94)90062-0.
[8]LIU Y X, LU H H, YANG S M, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161-167.DOI: 10.1016/j.fcr.2016.03.003.
[9]余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究[J]. 植物营养与肥料学报, 2015, 21(1): 138-146. DOI:10.11674/zwyf.2015.0115.
[10]于海莲, 胡震. 过氧化钙的常温制备[J]. 四川化工, 2008, 11(5): 1-3.
[11]周金玲, 郑小东, 田应兵, 等. 氧化剂对潜育性稻田土壤微生物生物量及有效养分的影响[J]. 江苏农业科学, 2017, 45(14): 227-231. DOI:10.15889/j.issn.1002-1302.2017.14.060.
[12]周彦波, 王英秀, 周振华, 等. 过氧化钙缓释氧剂的制备及其释氧特性研究[J]. 中国给水排水, 2012, 28(7): 64-67.
[13]董春华, 罗尊长, 苏以荣, 等. 一种以过氧化钙为基质乙基纤维素为包膜的缓释氧化剂及制备方法:CN105925267A[P]. 2016-09-07.
[14]黄媛. 桂西北典型土壤有机碳矿化对碳酸钙、水分及温度的响应[D].桂林:广西师范大学, 2013.
[15]MOORHEAD D L, LASHERMES G, SINSABJulH R L, et al. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency[J]. Soil Biology and Biochemistry, 2013, 66: 17-19. DOI:10.1016/j.soilbio.2013.06.016.
[16]XU H W, SHAO H B, LU Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109476. DOI:10.1016/j.ecoenv.2019.109476.
[17]宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.
[18]杨艳菊, 蔡祖聪, 张金波. 氧气浓度对水稻土N2O排放的影响[J]. 土壤, 2016, 48(3): 539-545. DOI:10.13758/j.cnki.tr.2016.03.019.
[19]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,2000.
[20]谭立敏, 彭佩钦, 李科林, 等. 水稻光合同化碳在土壤中的矿化和转化动态[J]. 环境科学, 2014, 35(1): 233-239. DOI:10.13227/j.hjkx.2014.01.034.
[21]林明月, 邓少虹, 苏以荣, 等. 施肥对喀斯特地区植草土壤活性有机碳组分和牧草固碳的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1119-1126.
[22]张影,刘星,任秀娟,等. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J].水土保持学报,2019, 33(3): 153-159,165. DOI:10.13870/j.cnki.stbcxb.2019.03.023.
[23]胡柯鑫, 董春华, 罗尊长, 等.不同释放速率过氧化钙对模拟潜育环境下稻田土壤理化特性的影响[J]. 土壤, 2020, 52(4): 853-861. DOI:10.13758/j.cnki.tr.2020.04.028.
[24]何方杰,韩辉邦,马学谦,等. 隆宝滩保护区不同生态系统CH4和CO2通量差异及其影响因素[J].生态学杂志:2020, 39(9):2821-2831. DOI:10.13292/j.1000-4890.202009.004.
[25]邱虎森, 王翠红, 盛浩. 生物质炭对土壤温室气体排放影响机制探讨[J]. 湖南农业科学, 2012(11): 49-52. DOI:10.16498/j.cnki.hnnykx.2012.11.006.
[26]郭艳亮, 王丹丹, 郑纪勇, 等. 生物炭添加对半干旱地区土壤温室气体排放的影响[J]. 环境科学, 2015, 36(9): 3393-3400. DOI:10.13227/j.hjkx.2015.09.035.
[27]JIAO Z H, HOU A X, SHI Y, et al.Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community[J].Communications in Soil Science and Plant Analysis, 2006, 37(13/14): 1889-1903. DOI: 10.1080/00103620600767124.
[28]冯虎元, 程国栋, 安黎哲. 微生物介导的土壤甲烷循环及全球变化研究[J]. 冰川冻土, 2004, 26(4): 411-419.
[29]彭艳丽, 赵华章, 杨亲正, 等. 微生物及酶固定二氧化碳的研究进展[J]. 化学与生物工程, 2010, 27(7): 10-13.
[30]张静, 周雪飞, 钱雅洁. 过氧化钙在环境修复应用中的研究进展[J]. 环境化学, 2014, 33(2): 321-326. DOI:10.7524/j.issn.0254-6108.2014.02.015.
[31]章明奎, WALELIGN D B, 唐红娟. 生物质炭对土壤有机质活性的影响[J]. 水土保持学报, 2012, 26(2): 127-131, 137. DOI:10.13870/j.cnki.stbcxb.2012.02.034.
[32]刘炳君, 杨扬, 李强, 等. 调节茶园土壤pH对土壤养分、酶活性及微生物数量的影响[J].安徽农业科学, 2011, 39(32): 19822-19824. DOI:10.13989/j.cnki.0517-6611.2011.32.192.
[1] CHEN Xu, LIANG Chengqin. Spectral Features, α-glucosidase Inhibitory Activities, Antioxidant Activities and Quantitative Determination of Mogroside ⅡA of Siraitia grosvenorii [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 132-141.
[2] ZOU Biqun. Antioxidant Activity of Vodiamine, Mulberry, Pomelo and Banana [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 50-54.
[3] LIU Xi. Antioxidant and Antitumor Activities of Extracts from Taxus chinensis var. mairei [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 55-59.
[4] GUO Yan-ju, PENG Feng-lin. Effects of Flavones on Antioxidant Enzymes and Apoptosis in Heart of Exhauted Exercise Rats [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 143-148.
[5] YI Li-na, BAI Kun-dong, LI Ming-xia, SHI Gui-yu. Comparison of Physiology and Biochemical Index of Some EvergreenandDeciduous Broad-leaved Species in Mao'er Mountain,Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11 -19 .
[2] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20 -26 .
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[4] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[5] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[6] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[7] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[8] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[9] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[10] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .