Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 39-51.doi: 10.16088/j.issn.1001-6600.2023082702
Previous Articles Next Articles
TAN Quanwei, XUE Guijun*, XIE Wenju
[1] GONG M J, BAI Y, QIN J, et al. Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin[J]. Journal of Building Engineering, 2020, 27: 100950. DOI: 10.1016/j.jobe.2019.100950. [2] 牛一鸣.“双碳”背景下北京市局住建筑运行碳排放预测研究[D]. 北京:北京建筑大学,2023. DOI: 10.26943/d.cnki.gbjzc.2023.000642. [3] 景胜蓝,王飞,雷勇刚.热负荷预测方法研究综述[J].建筑热能通风空调,2015,34(4):31-35. DOI: 10.3969/j.issn.1003-0344.2015.04.008. [4] CHENG R Y, YU J Q, ZHANG M, et al. Short-term hybrid forecasting model of ice storage air-conditioning based on improved SVR[J]. Journal of Building Engineering, 2022, 50: 104194. DOI: 10.1016/j.jobe.2022.104194. [5] DONG B, LI Z X, RAHMAN S M M, et al. A hybrid model approach for forecasting future residential electricity consumption[J]. Energy and Buildings, 2016, 117: 341-351. DOI: 10.1016/j.enbuild.2015.09.033. [6] ENESCU D. A review of thermal comfort models and indicators for indoor environments[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1353-1379. DOI: 10.1016/j.rser.2017.05.175. [7] WANG Y J, ZHAN C H, LI G H, et al. Physics-guided LSTM model for heat load prediction of buildings[J]. Energy and Buildings, 2023, 294: 113169. DOI: 10.1016/j.enbuild.2023.113169. [8] SUN Y, HAGHIGHAT F, FUNG B C M. A review of the-state-of-the-art in data-driven approaches for building energy prediction[J]. Energy and Buildings, 2020, 221: 110022. DOI: 10.1016/j.enbuild.2020.110022. [9] HUANG S J, SHIH K R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations[J]. IEEE Transactions on Power Systems, 2003, 18(2): 673-679. DOI: 10.1109/TPWRS.2003.811010. [10] KATO K, SAKAWA M, ISHIMARU K, et al. Heat load prediction through recurrent neural network in district heating and cooling systems[C] // 2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ: IEEE Press, 2008: 1401-1406. DOI: 10.1109/ICSMC.2008.4811482. [11] LIU J Y, WANG X, ZHAO Y, et al. Heating load forecasting for combined heat and power plants via strand-based LSTM[J]. IEEE Access, 2020, 8: 33360-33369. DOI: 10.1109/access.2020.2972303. [12] 周蜀杰,曾园园,江昊.基于扩张因果卷积的城市客流量预测算法[J].武汉大学学报(工学版),2023,56(2):218-225. DOI: 10.14188/j.1671-8844.2023-02-011. [13] 刘洪笑,向勉,周丙涛,等.基于Informer的长序列时间序列电力负荷预测[J].湖北民族大学学报(自然科学版),2021,39(3):326-331. DOI: 10.13501/j.cnki.42-1908/n.2021.09.015. [14] DU B G, HUANG S, GUO J, et al. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks[J]. Applied Soft Computing, 2022, 122: 108875. DOI: 10.1016/j.asoc.2022.108875. [15] GHOFRANI M, GHAYEKHLOO M, ARABALI A, et al. A hybrid short-term load forecasting with a new input selection framework[J]. Energy, 2015, 81: 777-786. DOI: 10.1016/j.energy.2015.01.028. [16] SONG J C, ZHANG L Y, XUE G X, et al. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and Buildings, 2021, 243: 110998. DOI: 10.1016/j.enbuild.2021.110998. [17] JAVED U, IJAZ K, JAWAD M, et al. A novel short receptive field based dilated causal convolutional network integrated with Bidirectional LSTM for short-term load forecasting[J]. Expert Systems with Applications, 2022, 205: 117689. DOI: 10.1016/j.eswa.2022.117689. [18] ZHANG L, ALAHMAD M, WEN J. Comparison of time-frequency-analysis techniques applied in building energy data noise cancellation for building load forecasting: a real-building case study[J]. Energy and Buildings, 2021, 231: 110592. DOI: 10.1016/j.enbuild.2020.110592. [19] HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116. DOI: 10.1016/j.apenergy.2019.01.055. [20] LI F Y, WAN Z B, KOCH T, et al. Improving the accuracy of multi-step prediction of building energy consumption based on EEMD-PSO-Informer and long-time series[J]. Computers and Electrical Engineering, 2023, 110: 108845. DOI: 10.1016/j.compeleceng.2023.108845. [21] REZAIE B, ROSEN M A. District heating and cooling: review of technology and potential enhancements[J]. Applied Energy, 2012, 93: 2-10. DOI: 10.1016/j.apenergy.2011.04.020. [22] FANG T T, LAHDELMA R. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied Energy, 2016, 179: 544-552. DOI: 10.1016/j.apenergy.2016.06.133. [23] DOTZAUER E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73(3/4): 277-284. DOI: 10.1016/s0306-2619(02)00078-8. [24] XUE P N, JIANG Y, ZHOU Z G, et al. Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]. Energy, 2019, 188: 116085. DOI: 10.1016/j.energy.2019.116085. [25] IDOWU S, SAGUNA S G A, ÅHLUND C, et al. Applied machine learning: forecasting heat load in district heating system[J]. Energy and Buildings, 2016, 133: 478-488. DOI: 10.1016/j.enbuild.2016.09.068. [26] 张琰妮,史加荣,李津,等.融合残差与VMD-ELM-LSTM的短期风速预测[J].太阳能学报,2023,44(9):340-347. DOI: 10.19912/j.0254-0096.tynxb.2022-0738. [27] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4):27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004. [28] DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[EB/OL]. (2019-06-02)[2023-11-30]. https://arxiv.org/abs/1901.02860. DOI: 10.48550/arXiv.1901.02860. [29] JURADO M, SAMPER M, ROSÉS R. An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting[J]. Electric Power Systems Research, 2023, 217: 109153. DOI: 10.1016/j.epsr.2023.109153. [30] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/ACCESS.2019.2922662. |
No related articles found! |
|