Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 39-51.doi: 10.16088/j.issn.1001-6600.2023082702

Previous Articles     Next Articles

Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer

TAN Quanwei, XUE Guijun*, XIE Wenju   

  1. School of Electrical Engineering, North China University of Science and Technology, Tangshan Heibei 063200, China
  • Received:2023-08-27 Revised:2023-11-30 Online:2024-09-25 Published:2024-10-11

Abstract: Accurate prediction of heating load not only effectively reduces energy consumption but also improves the efficiency of the heating system and user comfort. To enhance the accuracy of heating load prediction, this study combines the Variational Mode Decomposition (VMD) algorithm with an improved Informer model for heating load prediction. Firstly, the VMD algorithm is used to decompose the heating load data, reducing its non-stationarity. Secondly, relative positional encoding is introduced in the Informer model to better capture the dependencies in the sequential data and avoid information leakage, replacing the absolute positional encoding. Furthermore, dilated causal convolution is adopted instead of regular convolution to increase the receptive field and enhance the extraction of local information. Comparative experiments with mainstream prediction models (GRU, LSTM, Transformer, and Informer) are conducted on multiple datasets. The experimental results demonstrate that the RDC-Informer model achieves an R2 evaluation metric of 98.3%, which is 11.6%, 6.3%, 4.7%, and 2.6% higher than the comparative models, respectively. Additionally, the effectiveness of the dilated causal convolution is verified by increasing the convolution kernel, confirming the applicability and accuracy of the RDC-Informer model and providing a reference for further improvement in real-time smart heating.

Key words: heat supply load forecast, Informer, dilated causal convolution, relative position coding, VMD

CLC Number:  TU995
[1] GONG M J, BAI Y, QIN J, et al. Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin[J]. Journal of Building Engineering, 2020, 27: 100950. DOI: 10.1016/j.jobe.2019.100950.
[2] 牛一鸣.“双碳”背景下北京市局住建筑运行碳排放预测研究[D]. 北京:北京建筑大学,2023. DOI: 10.26943/d.cnki.gbjzc.2023.000642.
[3] 景胜蓝,王飞,雷勇刚.热负荷预测方法研究综述[J].建筑热能通风空调,2015,34(4):31-35. DOI: 10.3969/j.issn.1003-0344.2015.04.008.
[4] CHENG R Y, YU J Q, ZHANG M, et al. Short-term hybrid forecasting model of ice storage air-conditioning based on improved SVR[J]. Journal of Building Engineering, 2022, 50: 104194. DOI: 10.1016/j.jobe.2022.104194.
[5] DONG B, LI Z X, RAHMAN S M M, et al. A hybrid model approach for forecasting future residential electricity consumption[J]. Energy and Buildings, 2016, 117: 341-351. DOI: 10.1016/j.enbuild.2015.09.033.
[6] ENESCU D. A review of thermal comfort models and indicators for indoor environments[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1353-1379. DOI: 10.1016/j.rser.2017.05.175.
[7] WANG Y J, ZHAN C H, LI G H, et al. Physics-guided LSTM model for heat load prediction of buildings[J]. Energy and Buildings, 2023, 294: 113169. DOI: 10.1016/j.enbuild.2023.113169.
[8] SUN Y, HAGHIGHAT F, FUNG B C M. A review of the-state-of-the-art in data-driven approaches for building energy prediction[J]. Energy and Buildings, 2020, 221: 110022. DOI: 10.1016/j.enbuild.2020.110022.
[9] HUANG S J, SHIH K R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations[J]. IEEE Transactions on Power Systems, 2003, 18(2): 673-679. DOI: 10.1109/TPWRS.2003.811010.
[10] KATO K, SAKAWA M, ISHIMARU K, et al. Heat load prediction through recurrent neural network in district heating and cooling systems[C] // 2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ: IEEE Press, 2008: 1401-1406. DOI: 10.1109/ICSMC.2008.4811482.
[11] LIU J Y, WANG X, ZHAO Y, et al. Heating load forecasting for combined heat and power plants via strand-based LSTM[J]. IEEE Access, 2020, 8: 33360-33369. DOI: 10.1109/access.2020.2972303.
[12] 周蜀杰,曾园园,江昊.基于扩张因果卷积的城市客流量预测算法[J].武汉大学学报(工学版),2023,56(2):218-225. DOI: 10.14188/j.1671-8844.2023-02-011.
[13] 刘洪笑,向勉,周丙涛,等.基于Informer的长序列时间序列电力负荷预测[J].湖北民族大学学报(自然科学版),2021,39(3):326-331. DOI: 10.13501/j.cnki.42-1908/n.2021.09.015.
[14] DU B G, HUANG S, GUO J, et al. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks[J]. Applied Soft Computing, 2022, 122: 108875. DOI: 10.1016/j.asoc.2022.108875.
[15] GHOFRANI M, GHAYEKHLOO M, ARABALI A, et al. A hybrid short-term load forecasting with a new input selection framework[J]. Energy, 2015, 81: 777-786. DOI: 10.1016/j.energy.2015.01.028.
[16] SONG J C, ZHANG L Y, XUE G X, et al. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and Buildings, 2021, 243: 110998. DOI: 10.1016/j.enbuild.2021.110998.
[17] JAVED U, IJAZ K, JAWAD M, et al. A novel short receptive field based dilated causal convolutional network integrated with Bidirectional LSTM for short-term load forecasting[J]. Expert Systems with Applications, 2022, 205: 117689. DOI: 10.1016/j.eswa.2022.117689.
[18] ZHANG L, ALAHMAD M, WEN J. Comparison of time-frequency-analysis techniques applied in building energy data noise cancellation for building load forecasting: a real-building case study[J]. Energy and Buildings, 2021, 231: 110592. DOI: 10.1016/j.enbuild.2020.110592.
[19] HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116. DOI: 10.1016/j.apenergy.2019.01.055.
[20] LI F Y, WAN Z B, KOCH T, et al. Improving the accuracy of multi-step prediction of building energy consumption based on EEMD-PSO-Informer and long-time series[J]. Computers and Electrical Engineering, 2023, 110: 108845. DOI: 10.1016/j.compeleceng.2023.108845.
[21] REZAIE B, ROSEN M A. District heating and cooling: review of technology and potential enhancements[J]. Applied Energy, 2012, 93: 2-10. DOI: 10.1016/j.apenergy.2011.04.020.
[22] FANG T T, LAHDELMA R. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied Energy, 2016, 179: 544-552. DOI: 10.1016/j.apenergy.2016.06.133.
[23] DOTZAUER E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73(3/4): 277-284. DOI: 10.1016/s0306-2619(02)00078-8.
[24] XUE P N, JIANG Y, ZHOU Z G, et al. Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]. Energy, 2019, 188: 116085. DOI: 10.1016/j.energy.2019.116085.
[25] IDOWU S, SAGUNA S G A, ÅHLUND C, et al. Applied machine learning: forecasting heat load in district heating system[J]. Energy and Buildings, 2016, 133: 478-488. DOI: 10.1016/j.enbuild.2016.09.068.
[26] 张琰妮,史加荣,李津,等.融合残差与VMD-ELM-LSTM的短期风速预测[J].太阳能学报,2023,44(9):340-347. DOI: 10.19912/j.0254-0096.tynxb.2022-0738.
[27] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4):27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004.
[28] DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[EB/OL]. (2019-06-02)[2023-11-30]. https://arxiv.org/abs/1901.02860. DOI: 10.48550/arXiv.1901.02860.
[29] JURADO M, SAMPER M, ROSÉS R. An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting[J]. Electric Power Systems Research, 2023, 217: 109153. DOI: 10.1016/j.epsr.2023.109153.
[30] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/ACCESS.2019.2922662.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[7] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[8] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[9] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .
[10] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91 -100 .