Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 1-9.doi: 10.16088/j.issn.1001-6600.2024122304

• Intelligent Transportation •     Next Articles

Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model

TIAN Sheng1*, ZHAO Kailong1, MIAO Jialin2   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China;
    2. College of Automobile and Transportation, Nanjing Forestry University, Nanjing Jiangsu 210037, China
  • Received:2024-12-23 Revised:2025-03-02 Online:2026-01-05 Published:2026-01-26

Abstract: With the rapid development of autonomous driving technology, road traffic detection, as a core task of the perception module, directly impacts the safety and reliability of autonomous driving systems. Although deep learning-based methods have become a research hotspot, challenges such as low detection accuracy and poor model generalization remain. To address these issues, this paper proposes an improved YOLO11n-based road traffic detection method. The proposed approach enhances the detection accuracy of small objects by adding a small object detection layer, optimizes the existing dual DWConv structure by introducing a GhostConv+DWConv detection head combination, and designs an Inner-CIoU loss function better suited for small objects to improve model generalization and the accuracy of bounding box regression. Experimental results show that, compared with the existing YOLO11n algorithm, the proposed model achieves detection accuracy improvements of 1.1% and 1.9% on the KITTI and BDD100K datasets, respectively, with detection speeds of 125 FPS and 124 FPS. This demonstrates the model’s effectiveness in detecting low-resolution small objects and its strong generalization capability across diverse traffic scenarios.

Key words: autonomous driving, small target detection, YOLO11, multi-scale detection, loss function

CLC Number:  TP391.41;U463.6
[1] GHEORGHE C, DUGULEANA M, BOBOC R G, et al. Analyzing real-time object detection with YOLO algorithm in automotive applications: a review[J]. Computer Modeling in Engineering & Sciences, 2024, 141(3): 1939-1981. DOI: 10.32604/cmes.2024.054735.
[2] 杨飞帆, 李军. 面向自动驾驶的YOLO目标检测算法研究综述[J]. 汽车工程师, 2023(11): 1-11. DOI: 10.20104/j.cnki.1674-6546.20230095.
[3] 李海军, 孔繁程, 魏嘉彧, 等. 基于深度学习的小样本目标检测综述[J]. 兵工自动化, 2024, 43(1): 35-42. DOI: 10.7690/bgzdh.2024.01.008.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). June 20-25, 2005, San Diego, CA: IEEE, 2005: 886-893. DOI: 10.1109/CVPR.2005.177.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV: IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[6] MUJAHID A, AWAN M J, YASIN A, et al. Real-time hand gesture recognition based on deep learning YOLOv3 model[J]. Applied Sciences, 2021, 11(9): 4164. DOI: 10.3390/app11094164.
[7] QIU Z B, ZHU X, LIAO C B, et al. Detection of transmission line insulator defects based on an improved lightweight YOLOv4 model[J]. Applied Sciences, 2022, 12(3): 1207. DOI: 10.3390/app12031207.
[8] 陈文康, 陆声链, 刘冰浩, 等. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. DOI: 10.16088/j.issn.1001-6600.2020111404.
[9] 黄叶祺, 王明伟, 闫瑞, 等. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. DOI: 10.16088/j.issn.1001-6600.2022112106.
[10] XU X Y, ZHAO M, SHI P X, et al. Crack detection and comparison study based on faster R-CNN and mask R-CNN[J]. Sensors, 2022, 22(3): 1215. DOI: 10.3390/s22031215.
[11] 杨薇, 王洪元, 张继, 等. 一种基于Faster-RCNN的车辆实时检测改进算法[J]. 南京大学学报(自然科学), 2019, 55(2): 231-237. DOI: 10.13232/j.cnki.jnju.2019.02.008.
[12] 顾德英, 罗聿伦, 李文超. 基于改进YOLOv5算法的复杂场景交通目标检测[J]. 东北大学学报(自然科学版), 2022, 43(8):1073-1079. DOI: 10.12068/j.issn.1005-3026.2022.08.002.
[13] 张宇, 孙顺远. 基于上下文与特征交互的小目标检测算法[J]. 科技与创新, 2024(22): 10-12, 18. DOI: 10.15913/j.cnki.kjycx.2024.22.003.
[14] WANG P F, FU S, CAO X J. Improved lightweight target detection algorithm for complex roads with YOLOv5[C]//2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). August 5-7, 2022, Guangzhou: IEEE, 2022: 275-283. DOI: 10.1109/MLISE57402.2022.00062.
[15] JIAO B W, WANG Y L, WANG P, et al. RS-YOLO: an efficient object detection algorithm for roadscenes[J]. Digital Signal Processing, 2025, 157: 104889. DOI: 10.1016/j.dsp.2024.104889.
[16] BIE M L, LIU Y Y, LI G N, et al. Real-time vehicle detection algorithm based on a lightweight You-Only-Look-Once (YOLOv5n-L) approach[J]. Expert Systems with Applications, 2023, 213: 119108. DOI: 10.1016/j.eswa.2022.119108.
[17] PAN H, GUAN S P, ZHAO X Y. LVD-YOLO: an efficient lightweight vehicle detection model for intelligent transportation systems[J]. Image and Vision Computing, 2024, 151: 105276. DOI: 10.1016/j.imavis.2024.105276.
[18] YUE S Q, ZHANG Z Y, SHI Y, et al. WGS-YOLO: a real-time object detector based on YOLO framework for autonomous driving[J]. Computer Vision and Image Understanding, 2024, 249: 104200. DOI: 10.1016/j.cviu.2024.104200.
[19] 李洋, 苟刚. 基于改进YOLOX的轻量型垃圾分类检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 80-90. DOI: 10.16088/j.issn.1001-6600.2022100804.
[20] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. DOI: 10.1109/TCYB.2021.3095305.
[21] ZHANG H,XU C,ZHANG S J. Inner-IoU:More effective intersection over union loss with auxiliary bounding box[EB/OL]. (2023-11-14)[2025-01-03]. https://arxiv.org/abs/2311.02877. DOI: 10.48550/arXiv.2311.02877.
[1] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56-67.
[2] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[3] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[4] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[5] YU Xuesong, XU Bao. Bayes Estimations of Burr Distribution under the Weighted p, q Symmetric Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 186-193.
[6] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[7] WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86.
[8] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[9] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[10] LIN Yuan, LIU Haifeng, LIN Hongfei, XU Kan. Group Ranking Methods with Loss Function Incorporation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 62-70.
[11] DING Xin-yue, XU Mei-ping. Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[6] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[7] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[8] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[9] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .
[10] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68 -79 .