Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 62-70.doi: 10.16088/j.issn.1001-6600.2019.01.007

Previous Articles     Next Articles

Group Ranking Methods with Loss Function Incorporation

LIN Yuan1, LIU Haifeng2, LIN Hongfei2, XU Kan2*   

  1. 1.Faculty of Humanities and Social Sciences, Dalian University of Technology, Dalian Liaoning 116024,China;
    2.Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian Liaoning 116024,China
  • Received:2018-09-27 Online:2019-01-20 Published:2019-01-08

Abstract: Learning to rank has been attracted much attention in the domain of information retrieval and machine learning. A series of learning to rank algorithms have been proposed based on three types of methods, namely, pointwise, pairwise and listwise. Especially, ranking performance can be improved effectively by one of the listwise methods named group ranking. This paper explores how to combine the loss functions from these methods to improve group ranking performance. The basic idea is to incorporate the different loss functions and enrich the objective loss function based on neural networks. Firstly, a group learning to rank method based on Jeffrey’s divergence is presented. Secondly, a framework for loss function incorporation based on group ranking method and the other loss function is presented. The performance of the proposed method is compared on LETOR3.0 dataset, which demonstrates that with a good weighting scheme. Finally, experimental results show that the proposed method significantly outperforms the baselines which use single loss function, and it is comparable to the state-of-the-art algorithms in most cases.

Key words: learning to rank, information retrieval, neural network, loss function, Jeffrey’s divergence

CLC Number: 

  • TP391
[1] PAGE L,BRIN S,MOTWANI R,et al.The PageRank citation ranking:bringing order to the web[R/OL].Stanford, CA:Stanford Info Lab,1999[2018-09-27].http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf.
[2] KLEINBERG J M. Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5): 604-632.DOI:10.1145/324133.324140.
[3] ROBERTSON S E.Overview of the okapi projects[J].Journal of Documentation,1997,53(1):3-7.DOI: 10.1108/EUM0000000007186.
[4] ZHAI Chengxiang.Statistical language models for information retrieval[J].Foundations and Trends in Information Retrieval,2008,2(3):137-213.DOI:10.1561/1500000008.
[5] MAGNANT C,GRIVEL E,GIREMUS A,et al.Jeffrey’s divergence for state-space model comparison[J].Signal Processing,2015,114:61-74.DOI:10.1016/j.sigpro.2015.02.006.
[6] LIU Tieyan.Learning to rank for information retrieval[J].Foundations and Trends in Information Retrieval,2009,3(3):225-331.DOI:10.1561/1500000016.
[7] COSSOCK D,Zhang Tong.Subset ranking using regression[C]//Proceedings of the 19th Annual Conference on Learning Theory.Berlin:Springer,2006:605-619.DOI:10.1007/11776420_44.
[8] CRAMMER K,SINGER Y.Pranking with ranking[C]//Advances in neural information processing systems: Proceedings of the First 12 Conferences.Cambridge,MA:MIT Press,2002:641-647.
[9] FUHR N.Optimum polynomial retrieval functions based on the probability ranking principle[J].ACM Transactions on Information Systems,1989,7(3):183-204.DOI:10.1145/65943.65944.
[10] NALLAPATI R.Discriminative models for information retrieval[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY:ACM Press,2004:64-71.DOI:10.1145/1008992.1009006.
[11] JOACHIMST.Optimizing search engines using clickthrough data[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,NY:ACM Press,2002:133-142. DOI:10.1145/775047.775067.
[12] FREUND Y,IYER R,SCHAPIRE R E,et al.An efficient boosting algorithm for combining preferences[J]. Journal of Machine Learning Research,2003,4:933-969.
[13] BURGES C,SHAKED T,RENSHAW E,et al.Learning to rank using gradient descent[C]//Proceedings of the 22nd International Conference on Machine Learning.New York,NY:ACM Press,2005:89-96.DOI:10.1145/1102351. 1102363.
[14] TAYLOR M,GUIVER J,ROBERTSON S,et al.Softrank:optimizing non-smooth rank metrics[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining.New York,NY:ACM Press,2008:77-86.DOI: 10.1145/1341531.1341544.
[15] XU Jun,LIU Tieyan,LU Min,et al.Directly optimizing evaluation measures in learning to rank[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY:ACM Press,2008:107-114.DOI:10.1145/1390334.1390355.
[16] CHAKRABARTI S,KHANNA R,SAWANT U,et al.Structured learning for non-smooth ranking losses[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,NY:ACM Press,2008:88-96.DOI:10.1145/1401890.1401906.
[17] XU Jun,LIU Tieyan,LU Min,et al.Directly optimizing evaluation measures in learning to rank[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY:ACM Press,2008:107-114.DOI:10.1145/1390334.1390355.
[18] CAO Zhe,QIN Tao,LIU Tieyan,et al.Learning to rank: from pairwise approach to listwise approach[C]//Proceedings of the 24th International Conference on Machine Learning.New York,NY:ACM Press,2007:129- 136.DOI:10.1145/1273496.1273513.
[19] XIA Fen, LIU Tieyan, WANG Jue, et al. Listwise approach to learning to rank: theory and algorithm[C]//Proceedings of the 25th International Conference on Machine Learning. New York, NY:ACM Press, 2008: 1192-1199.DOI:10.1145/1390156.1390306.
[20] QIN Tao,ZHANG Xudong,TSAI M F,et al.Query-level loss functions for information retrieval[J]. Information Processing and Management,2008,44(2):838-855.DOI:10.1016/j.ipm.2007.07.016.
[21] LIN Yuan,LIN Hongfei,Xu KAN,et al.Group-enhanced ranking[J].Neurocomputing,2015,150:99-105.DOI: 10.1016/j.neucom.2014.03.079.
[22] WU Mingrui,CHANG Yi,ZHENG Zhaohui,et al.Smoothing DCG for learning to rank: a novel approach using smoothed hinge functions[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management.New York,NY:ACM Press,2009:1923-1926.DOI:10.1145/1645953.1646266.
[23] MOON T,SMOLA A,CHANG Yi,et al.IntervalRank:isotonic regression with listwise and pairwise constraints [C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining.New York,NY: ACM Press,2010:151-160.DOI:10.1145/1718487.1718507.
[24] AMOS T.Intransitivity of preferences[J].Psychological Review,1969,76(1):31-48.DOI:10.1037/h0026750.
[25] QIN Tao,LIU Tieyan,XU Jun,et al.LETOR: a benchmark collection for research on learning to rank for information retrieval[J].Information Retrieval,2010,13(4):346-374.DOI:10.1007/s10791-009-9123-y.
[1] MA Ling, LUO Xiaoshu, JIANG Pinqun. An Ink-jetted Code Character Recognition MethodBased on Probabilistic Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 32-41.
[2] LI Yadai, WEI Duqu. Research on Firing Behavior of Magnetic Field Coupled Memristive Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 19-24.
[3] GE Yifei, ZHENG Yanbin. Private Information Retrieval Schemes with Erasure-correcting or Error-correcting Properties [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 33-44.
[4] YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71.
[5] LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120.
[6] TAN Anjie, WEI Duqu, QIN Yinghua. Research on Discharge Mode and Synchronization Behavior of Electromagnetic Field Coupled Memristor Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 107-113.
[7] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[8] FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59.
[9] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[10] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[11] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22.
[12] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[13] WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88.
[14] XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41.
[15] WAN Lei,LUO Yuling,HUANG Xingyue. Monitoring Platform for the Hardware Spike Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!