Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 80-90.doi: 10.16088/j.issn.1001-6600.2024122103

• Intelligence Information Processing • Previous Articles     Next Articles

Fake News Detection with Integrated Emotional Knowledge

HUANG Qi, LI Bixin, WANG Mingwen*, XIAO Cong, LIU Jing, LOU Wenbing   

  1. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang Jiangxi 330022, China
  • Received:2024-12-21 Revised:2025-03-26 Online:2026-01-05 Published:2026-01-26

Abstract: Emotion plays a significant role in fake news detection. Existing research mainly focuses on extracting emotional features from a linguistic perspective, which fails to explore the relationships between emotions from a psychological perspective.In addition, the connection between sentiment features and text features is ignored by existing work, and the potential semantic information of news can not be explored fully. To address the above issues, a fake news detection mode(FNEK) is proposed by this paper, which integrates psychological and emotional knowledge. The Plutchik’s wheel of emotions theory from psychology is incorporated by the model to extract emotional features, and the emotional features are combined with textual features from local and global perspectives, which enhances the accuracy and reliability of fake news detection.Experimental results on publicly available Politifact, Weibo16, and Weibo20 datasets show that the proposed model improves accuracy by 2.1, 0.7 and 2.5 percentage points, respectively, compared with state-of-the-art baseline models.

Key words: fake news detection, linguistic perspective, psychological perspective, emotional knowledge, Plutchik’s wheel of emotions

CLC Number:  TP391.1
[1] 钱胜胜, 张天柱, 徐常胜. 多媒体社会事件分析综述[J]. 计算机科学, 2021, 48(3): 97-112. DOI: 10.11896/jsjkx.210200023.
[2] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. DOI: 10.1126/science.aap9559.
[3] KARIMI H, TANG J. Learning hierarchical discourse-level structure for fake news detection[EB/OL]. (2019-03-19)[2024-12-21]. https://arxiv.org/pdf/1903.07389. DOI: 10.48550/arXiv.1903.07389.
[4] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. DOI: 10.3778/j.issn.1673-9418.2301064.
[5] MIN E X, RONG Y, BIAN Y T, et al. Divide-and-conquer: post-user interaction network for fake news detection on social media[C]//WWW’22: The ACM Web Conference 2022. New York, NY: Association for Computing Machinery, 2022: 1148-1158. DOI: 10.1145/3485447.3512163.
[6] FAN Y. Rumour detection and analysis on Twitter[EB/OL]. (2023-04-04)[2024-12-21]. https://arxiv.org/abs/2304.01712. DOI: 10.48550/arXiv.2304.01712.
[7] WU L, RAO Y. Adaptive interaction fusion networks for fake news detection[EB/OL]. (2020-04-21)[2024-12-21]. https://arxiv.org/pdf/2004.10009. DOI: 10.48550/arXiv.2004.10009.
[8] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//WWW’21: The Web Conference 2021. New York, NY: Association for Computing Machinery, 2021: 3465-3476. DOI: 10.1145/3442381.3450004.
[9] 葛晓义, 张明书, 魏彬, 等. 基于双重情感感知的可解释谣言检测[J]. 中文信息学报, 2022, 36(9): 129-138. DOI: 10.3969/j.issn.1003-0077.2022.09.014.
[10] 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080-1094. DOI: 10.11897/SP.J.1016.2021.01080.
[11] AÏMEUR E, AMRI S, BRASSARD G. Fake news, disinformation and misinformation in social media: a review[J]. Social Network Analysis and Mining, 2023, 13(1): 30. DOI: 10.1007/s13278-023-01028-5.
[12] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//WWW’11: 20th International World Wide Web Conference. New York, NY: Association for Computing Machinery, 2011: 675-684.DOI: 10.1145/1963405.1963500.
[13] HORNE B, ADALI S. This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2017, 11(1): 759-766. DOI: 10.1609/icwsm.v11i1.14976.
[14] ISHLACH K, BEN-DAVID I, FIRE M, et al. A novel method for news article event-based embedding[EB/OL]. (2024-05-20)[2024-12-21]. https://arxiv.org/abs/2405.13071. DOI: 10.48550/arXiv.2405.13071.
[15] NAN Q, SHENG Q, CAO J, et al. Exploiting user comments for early detection of fake news prior to users’ commenting[EB/OL]. (2023-10-16)[2024-12-21]. https://arxiv.org/pdf/2310.10429. DOI: 10.48550/arXiv.2310.10429.
[16] ELFAIK H, NFAOUI E H. Automatic detection of fake news using gated recurrent unit deep model[J]. Procedia Computer Science, 2024, 233: 474-480. DOI: 10.1016/j.procs.2024.03.237.
[17] 刘政, 卫志华, 张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37(11): 3053-3056, 3100. DOI: 10.11772/j.issn.1001-9081.2017.11.3053
[18] 韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[J]. 小型微型计算机系统, 2024, 45(2): 301-308. DOI: 10.20009/j.cnki.21-1106/TP.2022-0412.
[19] 欧阳祺, 陈鸿昶, 刘树新, 等. 基于Bert-GNNs异质图注意力网络的早期谣言检测[J]. 电子学报, 2024, 52(1): 311-323. DOI: 10.12263/DZXB.20220882.
[20] 毛二松, 陈刚,刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, 33(11): 3369-3373. DOI: 10.3969/j.issn.1001-3695.2016.11.037.
[21] 刘赏, 沈逸凡. 基于新闻标题-正文差异性的虚假新闻检测方法[J]. 数据分析与知识发现, 2023, 7(2): 97-107. DOI: 10.11925/infotech.2096-3467.2022.0293.
[22] CUI L M, WANG S H, LEE D. SAME: sentiment-aware multimodal embedding for detecting fake news[C]//ASONAM’19: International Conference on Advances in Social Networks Analysis and Mining. New York, NY: Association for Computing Machinery, 2019: 41-48. DOI: 10.1145/3341161.3342894.
[23] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 549-556. DOI: 10.1609/aaai.v34i01.5393.
[24] 徐建民, 孙朋, 吴树芳. 传播路径树核学习的微博谣言检测方法[J]. 计算机科学, 2022, 49(6): 342-349. DOI: 10.11896/jsjkx.210400096.
[25] HU L M, YANG T C, ZHANG L H, et al. Compare to the knowledge: graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 754-763. DOI: 10.18653/v1/2021.acl-long.62.
[26] 郭秋实, 李晨曦, 刘金硕. 引入知识表示的图卷积网络谣言检测方法[J]. 计算机应用研究, 2022, 39(7): 2032-2036. DOI: 10.19734/j.issn.1001-3695.2022.01.0003.
[27] 周昊玮, 刘勇, 玄萍. 基于预训练和多模态融合的假新闻检测[J]. 计算机工程, 2024, 50(1): 289-295. DOI: 10.19678/j.issn.1000-3428.0066412.
[28] WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2560-2569. DOI: 10.18653/v1/2021.findings-acl.226.
[29] AJAO O, BHOWMIK D, ZARGARI S. Sentiment aware fake news detection on online social networks[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2019: 2507-2511. DOI: 10.1109/ICASSP.2019.8683170.
[30] GIACHANOU A, ROSSO P,CRESTANI F. Leveraging emotional signals for credibility detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research And Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2019: 877-880. DOI: 10.1145/3331184.3331285.
[31] PLUTCHIK R. A general psychoevolutionary theory of emotion[M]//Theories of Emotion. New York: Academic Press, 1980: 3-33. DOI: 10.1016/B978-0-12-558701-3.50007-7.
[32] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2024-12-21]. https://arxiv.org/abs/1810.04805. DOI: 10.48550/arXiv.1810.04805.
[33] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Menlo Park, CA: AAAI Press, 2016: 3818-3824.
[34] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181.
[35] NAN Q, CAO J, ZHU Y C, et al. MDFEND: multi-domain fake news detection[C]//CIKM’21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2021: 3343-3347. DOI: 10.1145/3459637.3482139.
[36] NAN Q, SHENG Q, CAO J, et al. Let silence speak: enhancing fake news detection with generated commentsfrom large language models[C]//CIKM’24: The 33rd ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2024: 1732-1742. DOI: 10.1145/3627673.367951.
[1] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .